Определенный интеграл как предел интегральной суммы онлайн
Перейти к содержимому

Определенный интеграл как предел интегральной суммы онлайн

  • автор:

§ 35. Определенный интеграл как предел интегральной суммы

Пусть функция у=ƒ(х) определена на отрезке [а; b], а < b. Выполним следующие действия.

2. В каждом частичном отрезке [xi-1;xi], i = 1,2. n выберем произвольную точку сi є [xi-1; xi] и вычислим значение функции в ней, т. е. величину ƒ(сi).

3. Умножим найденное значение функции ƒ (сi) на длину ∆xi=xi-xi-1 соответствующего частичного отрезка: ƒ (сi) • ∆хi.

4. Составим сумму Sn всех таких произведений:

Сумма вида (35.1) называется интегральной суммой функции у = ƒ(х) на отрезке [а; b]. Обозначим через λ длину наибольшего частичного отрезка: λ = max ∆xi(i = 1,2. n).

5. Найдем предел интегральной суммы (35.1), когда n → ∞ так, что λ → 0.

Если при этом интегральная сумма Sn имеет предел I, который не зависит ни от способа разбиения отрезка [а; b] на частичные отрезки, ни от выбора точек в них, то число I называется определенным интегралом от функции у = ƒ(х) на отрезке [а; b] и обозначается Т аким образом,

Числа а и b называются соответственна нижним и верхним пределами интегрирования, ƒ(х) — подынтегральной функцией, ƒ(х) dx — подынтегральным выражением, х — переменной интегрирования, отрезок [а; b] — областью ( отрезком) интегрирования.

Функция у=ƒ(х), для которой на отрезке [а; b] существует определенный интегралназывается интегрируемой на этом отрезке.

Сформулируем теперь теорему существования определенного интеграла.

Теорема 35.1 (Коши). Если функция у = ƒ(х) непрерывна на отрезке [а; b], то определенный интеграл

Отметим, что непрерывность функции является достаточным условием ее интегрируемости. Однако определенный интеграл может существовать и для некоторых разрывных функций, в частности для всякой ограниченной на отрезке функции, имеющей на нем конечное число точек разрыва.

Укажем некоторые свойства определенного интеграла, непосредственно вытекающие из его определения (35.2).

1. Определенный интеграл не зависим от обозначения переменной интегрирования:

Это следует из того, что интегральная сумма (35.1), а следовательно, и ее предел (35.2) не зависят от того, какой буквой обозначается аргумент данной функции.

2. Определенный интеграл с одинаковыми пределами интегрирования равен нулю:

3. Для любого действительного числа с.

Калькулятор Интегралов

Калькулятор Интегралов

Вычисление интегралов онлайн
— по шагам и с графиками!

Калькулятор Интегралов позволяет вычислять интегралы и первообразные функций онлайн — совершенно бесплатно!

Наш Калькулятор позволяет проверить решение Ваших математических заданий. Он поможет вам с решением задачи показывая весь ход решения шаг за шагом. Поддерживаются все виды интегрирования включая специальные функции.

Калькулятор Интегралов поддерживает вычисление определённых и неопределённых (первообразных функций) интегралов включая интегрирование функций с несколькими переменными. Кроме этого Вы можете проверить результат своего решения! Интерактивные графики помогут представить и лучше понять функции интегралов.

Чтобы узнать больше о том как пользоваться Калькулятором Интегралов, загляните в раздел «Справка» или ознакомьтесь с примерами.

Ну что ж, теперь — вперед! Успешного интегрирования!

Введите функцию, которую вы хотите проинтегрировать в Калькулятор Интегралов. Не вводите «f(x) =» часть и дифференциал «dx«! Калькулятор Интегралов сразу показывает математическое выражение в графическом виде, прямо в процессе ввода. Убедитесь, что это выражение соответствует тому, что Вы хотели ввести. Используйте скобки если понадобится, например «a/(b+c)«.

В разделе «Примеры», приведены некоторые из функций которые Калькулятор Интегралов способен вычислять.

После того как Вы закончили вводить вашу функцию, нажмите «=» и Калькулятор Интегралов выдаст результат.

В разделе «Настройки» переменная интегрирования и пределы интегрирования могут быть установлены/изменены. Если пределы интегрирования не будут указаны, то будет вычислена только лишь первообразная функция.

Щелчок мышки на примере вводит его в Калькулятор Интегралов. Простое наведение мышки — показывает текст выражения.

Настройте параметры калькулятора:

Переменная интегрирования:
Верхний предел (до): +∞
Нижний предел (от): –∞
Использовать только численное интегрирование?
Упрощать выражения интенсивнее?
Упрощать все корни?
(√ x² станет x, а не |x|)
Использовать комплексные числа (ℂ)?
Использовать числа с запятой вместо дробей?

Генератор заданий для тренировки позволяет сгенерировать сколько угодно различных случайных заданий.

Ниже Вы найдете настройки конфигурации и один из предложенных вариантов задания. Вы можете взяться за его решение (тогда оно будет введено в Калькулятор) или сгенерировать новое.

Вычисляем интеграл: Введите Ваш результат:

Следующее выражение будет вычислено:

Загрузка … пожалуйста подождите!
Это займет несколько секунд.

Это не то, что Вы имели ввиду? Используйте скобки! В случае необходимости, выберите переменную и пределы интегрирования в разделе «Настройки«.

Поддержка

Вам помог мой калькулятор? Расскажите своим друзьям об этом Калькуляторе и Вы тоже сможете мне помочь!

Результаты вычислений

Наверху страницы введите функцию, которую Вы хотите проинтегрировать. Переменная интегрирования, пределы интегрирования и другие параметры могут быть изменены в разделе «Настройки«. Нажмите «=» чтобы запустить интегрирование/нахождение первообразной функции. Результат будет показан ниже на этой странице.

Как работает Калькулятор Интегралов

Для тех кому интересны технические подробности, в этой части рассказывается как устроен и работает Калькулятор Интегралов.

Сначала синтаксический анализатор (па́рсер) анализирует исходное математическое выражение. Он преобразует его в форму более удобную для компьютера, а именно в форму дерева (см. картинку ниже). В процессе такого преобразования, Интегральный Калькулятор должен соблюдать порядок операций с учетом их приоритета. Так же, как и то, что в математических выражениях знак умножения часто опускается, например, мы обычно пишем «5x» вместо «5*x». Калькулятор Интегралов должен уметь понимать такие случаи и сам добавлять знак умножения.

Па́рсер написан на JavaScript, и основывается на алгоритме сортировочной станции, поэтому может исполняться прямо в браузере. Это дает возможность генерировать удобочитаемое выражение на ходу, преобразуя получающееся дерево в код для LaTeX (Ла́тех). С помощью MathJax происходит генерация картинки и ее отображение в браузере.

По нажатию кнопки » Проверка решения» должен решить сложную задачу по определению являются ли два математических выражения равными друг другу. Разница между выражениями вычисляется и упрощается с помощью Ма́ксимы настолько, насколько это возможно. К примеру, это может быть переписывание тригонометрических/гиперболических функций в их экспоненциальные формы. Если удается упростить разницу до нуля — задача выполнена. В противном случае, применяется вероятностный алгоритм, который вычисляет и сравнивает оба выражения в случайно выбранных местах. В случае с первообразной, вся процедура повторяется для каждой производной, т.к. первообразная может отличаться константой.

Интерактивные графики функций вычисляются в браузере и отрисовываются на Сanvas («Холст») из HTML5. Для каждой математической функции, которая должна быть отрисована, Калькулятор создает функцию JavaScript, которая затем вычисляется с шагом, необходимым для правильного отображения графика. Все сингулярности (например полюса) функции обнаруживаются в процессе отрисовки и обрабатываются отдельно. Управление жестами для мобильных устройств сделано на основе hammer.js.

Если у Вас есть вопросы или пожелания, а так же идеи как улучшить Калькулятор Интегралов, пожалуйста пишите мне на e-mail.

© David Scherfgen 2024 — all rights reserved.

Перевод сайта: Timur Saitov

Вычисление интегралов

С помощью данного онлайн-калькулятора можно вычислять интегралы. Например, найти интеграл x 3 sin(x 2 ) . Запишем как x^3*sin(x^2) и нажимаем кнопку Получить решение .
Если интеграл определенный, например, , то записываем 2/x^4+tan(x) , в качестве пределов интегрирования указываем 1 , 2 . Первая строка служит для ввода числителя функции, вторая — для знаменателя. Примечание: число «пи» ( π ) записывается как pi ; знак «бесконечность» (∞) ≡ infinity

Примеры правильной записи некоторых выражений

sqrt(6-x)
(6+2*x)^(1/3)
log5(1+x) log(1+x,5)
(2/3+x^2)/(x^3+x)

Видеоинструкция

Вместе с этим калькулятором также используют следующие:
Точки разрыва функции

Алгоритм исследования построения графика функции

Построение графика функции методом дифференциального исчисления

Экстремум функции двух переменных

Приемы нахождения неопределенных интегралов

Пример 1. Вычислить ∫ (3x+15) 17 dx .
Решение.
Возводить двучлен в 17-ю степень нецелесообразно. Исходя из табличного интеграла , получаем
= .
Пример 2. Вычислить .
Решение.
Аналогично предыдущему,
= Пример 3. .
Решение. Поскольку
, то . Пример 4. Вычислить
Решение. Так как
, то . Пример 5. Вычислить .
Решение.
Применим подстановку . Отсюда x-5=t 2 , x=t 2 +5 , dx=2tdt .
Подставив в интеграл, получим

Пример 6. Вычислить ∫ x 2 e x dx .
Решение.
Положим u=x 2 , dv=e x dx ; тогда du=2xdx , v=e x . Применим формулу интегрирования по частям:
∫x 2 e x dx=x 2 e x -2∫xe x .
Мы добились понижения степени x на единицу. Чтобы найти ∫xe x , применим еще раз интегрирование по частям. Полагаем u=x , dv=e x dx ; тогда du=dx , v=e x и
∫xe x =x 2 e x -2xe x +2e x +C . Пример 7. Вычислить .
Решение. Выделяя целую часть, получим: .
Учитывая, что x 4 +5x 2 +4=(x 2 +1)(x 2 +4) , для второго слагаемого получаем разложение

Приводя к общему знаменателю, получим равенство числителей:
-5x 2 –4=(Ax+B)(x 2 +4)+(Cx+D)(x 2 +1) .
Приравнивая коэффициенты при одинаковых степенях x, получаем
x 3 : 0=A+C
x2: -5=B+D
x: 0=4A+C
x 0 : -4=4B+D Отсюда находим A=C=0 , B= 1 /3 , D=- 16 /3 .
Подставляя найденные коэффициенты в разложение и интегрируя его, получаем:

Пример 8. Вычислить .
Решение. Так как
,
то подынтегральное выражение есть рациональная функция от x и ; поэтому введем подстановку:
; ,
откуда
; ; ;.
Следовательно,

Пример 9. Вычислить .
Решение.
Подынтегральная функция рационально зависит от sinx(x) и cos(x) ; применим подстановку tg x /2=t , тогда
, , и
=
Возвращаясь к старой переменной, получим
= . Пример 10. Вычислить .
Решение.
Произведем замену 1+3x 8 = z 2 . Тогда , ;
таким образом,
.
Следует обратить внимание, что при замене переменной в определенном интеграле пределы интегрирования в общем случае изменяются. Пример 11.Вычислить несобственный интеграл или доказать его расходимость.
Решение. Подынтегральная функция не ограничена в окрестности точки x =1. На любом же отрезке [1+ε;e] она интегрируема, так как является непрерывной функцией. Поэтому

Пример 12. Вычислить несобственный интеграл или доказать его расходимость.
Решение.
Подынтегральная функция непрерывна и интегрируема на R . По определению

= =

Интеграл сходится. Пример 13. Найти площадь фигуры, ограниченной параболой y=x 2 и прямой x+y=2 .
Решение.
Найдем абсциссы точек пересечения параболы y=x 2 и прямой y=2-x . Решая уравнение x 2 =2-x , находим x1=-2 , x2=1 . Так как фигура ограничена сверху прямой, а снизу параболой, по известной формуле находим
.

Определенный интеграл онлайн

Определенным интегралом от заданной функции называется предел интегральных сумм, т.е.:

Определенный интеграл численно равен площади фигуры, ограниченной осью абсцисс, прямыми , и графиком функции .

Для того чтобы вычислить определенный интеграл, сначала нужно вычислить неопределенный интеграл , а затем воспользоваться формулой Ньютона-Лейбница:

Эта формула применима при условии, что подинтегральная функция является непрерывной на отрезке интегрирования. Поэтому, прежде чем приступить к вычислению определенного интеграла, необходимо найти область определения подинтегральной функции. Если выяснится, что подинтегральная функция имеет точки разрыва на отрезке интегрирования, необходимо разбить отрезок на несколько частей в каждой из которых подинтегральная функция непрерывна. Далее, следует вычислить соответствующие неопределенные интегралы на каждом из отрезков, и воспользоваться формулой Ньютона-Лейбница, взяв пределы в точках, где функция терпит разрыв.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *