Когда необходимо использовать порождающий паттерн одиночка
Перейти к содержимому

Когда необходимо использовать порождающий паттерн одиночка

  • автор:

Когда необходимо использовать порождающий паттерн одиночка

Одиночка (Singleton, Синглтон) — порождающий паттерн, который гарантирует, что для определенного класса будет создан только один объект, а также предоставит к этому объекту точку доступа.

Когда надо использовать Синглтон? Когда необходимо, чтобы для класса существовал только один экземпляр

Синглтон позволяет создать объект только при его необходимости. Если объект не нужен, то он не будет создан. В этом отличие синглтона от глобальных переменных.

Классическая реализация данного шаблона проектирования на C# выглядит следующим образом:

class Singleton < private static Singleton instance; private Singleton() <>public static Singleton getInstance() < if (instance == null) instance = new Singleton(); return instance; >>

В классе определяется статическая переменная — ссылка на конкретный экземпляр данного объекта и приватный конструктор. В статическом методе getInstance() этот конструктор вызывается для создания объекта, если, конечно, объект отсутствует и равен null.

Для применения паттерна Одиночка создадим небольшую программу. Например, на каждом компьютере можно одномоментно запустить только одну операционную систему. В этом плане операционная система будет реализоваться через паттерн синглтон:

class Program < static void Main(string[] args) < Computer comp = new Computer(); comp.Launch("Windows 8.1"); Console.WriteLine(comp.OS.Name); // у нас не получится изменить ОС, так как объект уже создан comp.OS = OS.getInstance("Windows 10"); Console.WriteLine(comp.OS.Name); Console.ReadLine(); >> class Computer < public OS OS < get; set; >public void Launch(string osName) < OS = OS.getInstance(osName); >> class OS < private static OS instance; public string Name < get; private set; >protected OS(string name) < this.Name=name; >public static OS getInstance(string name) < if (instance == null) instance = new OS(name); return instance; >>

Синглтон и многопоточность

При применении паттерна синглтон в многопоточным программах мы можем столкнуться с проблемой, которую можно описать следующим образом:

static void Main(string[] args) < (new Thread(() =>< Computer comp2 = new Computer(); comp2.OS = OS.getInstance("Windows 10"); Console.WriteLine(comp2.OS.Name); >)).Start(); Computer comp = new Computer(); comp.Launch("Windows 8.1"); Console.WriteLine(comp.OS.Name); Console.ReadLine(); >

Здесь запускается дополнительный поток, который получает доступ к синглтону. Параллельно выполняется тот код, который идет запуска потока и кторый также обращается к синглтону. Таким образом, и главный, и дополнительный поток пытаются инициализровать синглтон нужным значением — «Windows 10», либо «Windows 8.1». Какое значение сиглтон получит в итоге, пресказать в данном случае невозможно.

Вывод программы может быть такой:

Windows 8.1 Windows 10
Windows 8.1 Windows 8.1

В итоге мы сталкиваемся с проблемой инициализации синглтона, когда оба потока одновременно обращаются к коду:

if (instance == null) instance = new OS(name);

Чтобы решить эту проблему, перепишем класс синглтона следующим образом:

class OS < private static OS instance; public string Name < get; private set; >private static object syncRoot = new Object(); protected OS(string name) < this.Name = name; >public static OS getInstance(string name) < if (instance == null) < lock (syncRoot) < if (instance == null) instance = new OS(name); >> return instance; > >

Чтобы избежать одновременного доступа к коду из разных потоков критическая секция заключается в блок lock .

Другие реализации синглтона

Выше были рассмотрены общие стандартные реализации: потоконебезопасная и потокобезопасная реализации паттерна. Но есть еще ряд дополнительных реализаций, которые можно рассмотреть.

Потокобезопасная реализация без использования lock

public class Singleton < private static readonly Singleton instance = new Singleton(); public string Date < get; private set; >private Singleton() < Date = System.DateTime.Now.TimeOfDay.ToString(); >public static Singleton GetInstance() < return instance; >>

Данная реализация также потокобезопасная, то есть мы можем использовать ее в потоках так:

(new Thread(() => < Singleton singleton1 = Singleton.GetInstance(); Console.WriteLine(singleton1.Date); >)).Start(); Singleton singleton2 = Singleton.GetInstance(); Console.WriteLine(singleton2.Date);

Lazy-реализация

Определение объекта синглтона в виде статического поля класса открывает нам дорогу к созданию Lazy-реализации паттерна Синглтон, то есть такой реализации, где данные будут инициализироваться только перед непосредственным использованием. Поскольку статические поля инициализируются перед первым доступом к статическому членам класса и перед вызовом статического конструктора (при его наличии). Однако здесь мы можем столкнуться с двумя трудностями.

Во-первых, класс синглтона может иметь множество статических переменных. Возможно, мы вообще не будем обращаться к объекту синглтона, а будем использовать какие-то другие статические переменные:

public class Singleton < private static readonly Singleton instance = new Singleton(); public static string text = "hello"; public string Date < get; private set; >private Singleton() < Console.WriteLine($"Singleton ctor "); Date = System.DateTime.Now.TimeOfDay.ToString(); > public static Singleton GetInstance() < Console.WriteLine($"GetInstance "); Thread.Sleep(500); return instance; > > class Program < static void Main(string[] args) < Console.WriteLine($"Main "); Console.WriteLine(Singleton.text); > >

В данном случае идет только обращение к переменной text, однако статическое поле instance также будет инициализировано. Например, консольный вывод в данном случае мог бы выглядеть следующим образом:

Singleton ctor 16:05:54.1469982 Main 16:05:54.2920316 hello

В данном случае мы видим, что статическое поле instance инициализировано.

Для решения этой проблемы выделим отдельный внутренний класс в рамках класса синглтона:

public class Singleton < public string Date < get; private set; >public static string text = "hello"; private Singleton() < Console.WriteLine($"Singleton ctor "); Date = DateTime.Now.TimeOfDay.ToString(); > public static Singleton GetInstance() < Console.WriteLine($"GetInstance "); return Nested.instance; > private class Nested < internal static readonly Singleton instance = new Singleton(); >> class Program < static void Main(string[] args) < Console.WriteLine($"Main "); Console.WriteLine(Singleton.text); > >

Теперь статическая переменная, которая представляет объект синглтона, определена во вложенном классе Nested. Чтобы к этой переменной можно было обращаться из класса синглтона, она имеет модификатор internal, в то же время сам класс Nested имеет модификатор private, что позволяет гарантировать, что данный класс будет доступен только из класса Singleton.

Консольный вывод в данном случае мог бы выглядеть следующим образом:

Main 16:11:40.1320873 hello

Реализация через класс Lazy

Еще один способ создания синглтона представляет использование класса Lazy:

public class Singleton < private static readonly Lazylazy = new Lazy(() => new Singleton()); public string Name < get; private set; >private Singleton() < Name = System.Guid.NewGuid().ToString(); >public static Singleton GetInstance() < return lazy.Value; >>

Одиночка

Одиночка — это порождающий паттерн проектирования, который гарантирует, что у класса есть только один экземпляр, и предоставляет к нему глобальную точку доступа.

Паттерн Одиночка

Проблема

Одиночка решает сразу две проблемы, нарушая принцип единственной ответственности класса.

Глобальный доступ к одному объекту

  1. Гарантирует наличие единственного экземпляра класса. Чаще всего это полезно для доступа к какому-то общему ресурсу, например, базе данных. Представьте, что вы создали объект, а через некоторое время пробуете создать ещё один. В этом случае хотелось бы получить старый объект, вместо создания нового. Такое поведение невозможно реализовать с помощью обычного конструктора, так как конструктор класса всегда возвращает новый объект.
  1. Предоставляет глобальную точку доступа. Это не просто глобальная переменная, через которую можно достучаться к определённому объекту. Глобальные переменные не защищены от записи, поэтому любой код может подменять их значения без вашего ведома. Но есть и другой нюанс. Неплохо бы хранить в одном месте и код, который решает проблему №1, а также иметь к нему простой и доступный интерфейс.

Интересно, что в наше время паттерн стал настолько известен, что теперь люди называют «одиночками» даже те классы, которые решают лишь одну из проблем, перечисленных выше.

Решение

Все реализации одиночки сводятся к тому, чтобы скрыть конструктор по умолчанию и создать публичный статический метод, который и будет контролировать жизненный цикл объекта-одиночки.

Если у вас есть доступ к классу одиночки, значит, будет доступ и к этому статическому методу. Из какой точки кода вы бы его ни вызвали, он всегда будет отдавать один и тот же объект.

Аналогия из жизни

Правительство государства — хороший пример одиночки. В государстве может быть только одно официальное правительство. Вне зависимости от того, кто конкретно заседает в правительстве, оно имеет глобальную точку доступа «Правительство страны N».

Структура

Структура классов паттерна Одиночка

  1. Одиночка определяет статический метод getInstance , который возвращает единственный экземпляр своего класса. Конструктор одиночки должен быть скрыт от клиентов. Вызов метода getInstance должен стать единственным способом получить объект этого класса.

Псевдокод

В этом примере роль Одиночки отыгрывает класс подключения к базе данных.

Этот класс не имеет публичного конструктора, поэтому единственный способ получить его объект — это вызвать метод getInstance . Этот метод сохранит первый созданный объект и будет возвращать его при всех последующих вызовах.

// Класс одиночки определяет статический метод `getInstance`, // который позволяет клиентам повторно использовать одно и то же // подключение к базе данных по всей программе. class Database is // Поле для хранения объекта-одиночки должно быть объявлено // статичным. private static field instance: Database // Конструктор одиночки всегда должен оставаться приватным, // чтобы клиенты не могли самостоятельно создавать // экземпляры этого класса через оператор `new`. private constructor Database() is // Здесь может жить код инициализации подключения к // серверу баз данных. // . // Основной статический метод одиночки служит альтернативой // конструктору и является точкой доступа к экземпляру этого // класса. public static method getInstance() is if (Database.instance == null) then acquireThreadLock() and then // На всякий случай ещё раз проверим, не был ли // объект создан другим потоком, пока текущий // ждал освобождения блокировки. if (Database.instance == null) then Database.instance = new Database() return Database.instance // Наконец, любой класс одиночки должен иметь какую-то // полезную функциональность, которую клиенты будут // запускать через полученный объект одиночки. public method query(sql) is // Все запросы к базе данных будут проходить через этот // метод. Поэтому имеет смысл поместить сюда какую-то // логику кеширования. // . class Application is method main() is Database foo = Database.getInstance() foo.query("SELECT . ") // . Database bar = Database.getInstance() bar.query("SELECT . ") // Переменная "bar" содержит тот же объект, что и // переменная "foo".

Применимость

Когда в программе должен быть единственный экземпляр какого-то класса, доступный всем клиентам (например, общий доступ к базе данных из разных частей программы).

Одиночка скрывает от клиентов все способы создания нового объекта, кроме специального метода. Этот метод либо создаёт объект, либо отдаёт существующий объект, если он уже был создан.

Когда вам хочется иметь больше контроля над глобальными переменными.

В отличие от глобальных переменных, Одиночка гарантирует, что никакой другой код не заменит созданный экземпляр класса, поэтому вы всегда уверены в наличии лишь одного объекта-одиночки.

Тем не менее, в любой момент вы можете расширить это ограничение и позволить любое количество объектов-одиночек, поменяв код в одном месте (метод getInstance ).

Шаги реализации

  1. Добавьте в класс приватное статическое поле, которое будет содержать одиночный объект.
  2. Объявите статический создающий метод, который будет использоваться для получения одиночки.
  3. Добавьте «ленивую инициализацию» (создание объекта при первом вызове метода) в создающий метод одиночки.
  4. Сделайте конструктор класса приватным.
  5. В клиентском коде замените вызовы конструктора одиночка вызовами его создающего метода.

Преимущества и недостатки

  • Гарантирует наличие единственного экземпляра класса.
  • Предоставляет к нему глобальную точку доступа.
  • Реализует отложенную инициализацию объекта-одиночки.
  • Нарушает принцип единственной ответственности класса.
  • Маскирует плохой дизайн.
  • Проблемы мультипоточности.
  • Требует постоянного создания Mock-объектов при юнит-тестировании.

Отношения с другими паттернами

  • Фасад можно сделать Одиночкой, так как обычно нужен только один объект-фасад.
  • Паттерн Легковес может напоминать Одиночку, если для конкретной задачи у вас получилось свести количество объектов к одному. Но помните, что между паттернами есть два кардинальных отличия:
    1. В отличие от Одиночки, вы можете иметь множество объектов-легковесов.
    2. Объекты-легковесы должны быть неизменяемыми, тогда как объект-одиночка допускает изменение своего состояния.
  • Абстрактная фабрика, Строитель и Прототип могут быть реализованы при помощи Одиночки.

Примеры реализации паттерна

Не втыкай в транспорте

Лучше почитай нашу книгу о паттернах проектирования.

Теперь это удобно делать даже во время поездок в общественном транспорте.

Эта статья является частью нашей электронной книги Погружение в Паттерны Проектирования.

Refactoring.Guru

  • Премиум контент
    • Книга о паттернах
    • Курс по рефакторингу
    • Введение в рефакторинг
      • Чистый код
      • Технический долг
      • Когда рефакторить
      • Как рефакторить
      • Раздувальщики
        • Длинный метод
        • Большой класс
        • Одержимость элементарными типами
        • Длинный список параметров
        • Группы данных
        • Операторы switch
        • Временное поле
        • Отказ от наследства
        • Альтернативные классы с разными интерфейсами
        • Расходящиеся модификации
        • Стрельба дробью
        • Параллельные иерархии наследования
        • Комментарии
        • Дублирование кода
        • Ленивый класс
        • Класс данных
        • Мёртвый код
        • Теоретическая общность
        • Завистливые функции
        • Неуместная близость
        • Цепочка вызовов
        • Посредник
        • Неполнота библиотечного класса
        • Составление методов
          • Извлечение метода
          • Встраивание метода
          • Извлечение переменной
          • Встраивание переменной
          • Замена переменной вызовом метода
          • Расщепление переменной
          • Удаление присваиваний параметрам
          • Замена метода объектом методов
          • Замена алгоритма
          • Перемещение метода
          • Перемещение поля
          • Извлечение класса
          • Встраивание класса
          • Сокрытие делегирования
          • Удаление посредника
          • Введение внешнего метода
          • Введение локального расширения
          • Самоинкапсуляция поля
          • Замена простого поля объектом
          • Замена значения ссылкой
          • Замена ссылки значением
          • Замена поля-массива объектом
          • Дублирование видимых данных
          • Замена однонаправленной связи двунаправленной
          • Замена двунаправленной связи однонаправленной
          • Замена магического числа символьной константой
          • Инкапсуляция поля
          • Инкапсуляция коллекции
          • Замена кодирования типа классом
          • Замена кодирования типа подклассами
          • Замена кодирования типа состоянием/стратегией
          • Замена подкласса полями
          • Разбиение условного оператора
          • Объединение условных операторов
          • Объединение дублирующихся фрагментов в условных операторах
          • Удаление управляющего флага
          • Замена вложенных условных операторов граничным оператором
          • Замена условного оператора полиморфизмом
          • Введение Null-объекта
          • Введение проверки утверждения
          • Переименование метода
          • Добавление параметра
          • Удаление параметра
          • Разделение запроса и модификатора
          • Параметризация метода
          • Замена параметра набором специализированных методов
          • Передача всего объекта
          • Замена параметра вызовом метода
          • Замена параметров объектом
          • Удаление сеттера
          • Сокрытие метода
          • Замена конструктора фабричным методом
          • Замена кода ошибки исключением
          • Замена исключения проверкой условия
          • Подъём поля
          • Подъём метода
          • Подъём тела конструктора
          • Спуск метода
          • Спуск поля
          • Извлечение подкласса
          • Извлечение суперкласса
          • Извлечение интерфейса
          • Свёртывание иерархии
          • Создание шаблонного метода
          • Замена наследования делегированием
          • Замена делегирования наследованием
          • Введение в паттерны
            • Что такое Паттерн?
            • История паттернов
            • Зачем знать паттерны?
            • Критика паттернов
            • Классификация паттернов
            • Фабричный метод
            • Абстрактная фабрика
            • Строитель
            • Прототип
            • Одиночка
            • Адаптер
            • Мост
            • Компоновщик
            • Декоратор
            • Фасад
            • Легковес
            • Заместитель
            • Цепочка обязанностей
            • Команда
            • Итератор
            • Посредник
            • Снимок
            • Наблюдатель
            • Состояние
            • Стратегия
            • Шаблонный метод
            • Посетитель
            • C#
            • C++
            • Go
            • Java
            • PHP
            • Python
            • Ruby
            • Rust
            • Swift
            • TypeScript

            Одиночка на Java

            Одиночка

            Одиночка — это порождающий паттерн, который гарантирует существование только одного объекта определённого класса, а также позволяет достучаться до этого объекта из любого места программы.

            Одиночка имеет такие же преимущества и недостатки, что и глобальные переменные. Его невероятно удобно использовать, но он нарушает модульность вашего кода.

            Вы не сможете просто взять и использовать класс, зависящий от одиночки в другой программе. Для этого придётся эмулировать присутствие одиночки и там. Чаще всего эта проблема проявляется при написании юнит-тестов.

            Одиночка

            Необходимость в создании одного экземпляра конкретного объекта.

            Примером такого объекта может являться объект базы данных. Такие объекты нельзя клонировать или копировать, объект должен быть один во всей системе. Это необходимо для того, чтобы избежать проблем с целостностью и согласованностью данных.

            Назначение

            Одиночка (Singleton) – это порождающий паттерн проектирования, который гарантирует, что будет создан только один экземпляр класса, и предоставляет к нему глобальную точку доступа.

            Решаемые задачи
            Контроль за объектом.

            Паттерн гарантирует, что у класса есть только один экземпляр

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *