Как найти углы треугольника если известны все стороны
Перейти к содержимому

Как найти углы треугольника если известны все стороны

  • автор:

Углы треугольника

Геометрическая фигура из трех отрезков, соединенных между собой тремя точками, не лежащими на одной прямой, называется треугольником. Это — многоугольник с тремя углами. Сумма всех углов треугольника равна 180°. Если известна величина двух из них, третий угол определяем вычитанием из 180° величины двух известных углов.

α = 180°-β-γ

Если известны стороны треугольника, можно рассчитать его углы, воспользовавшись теоремой косинусов. Здесь, квадрат одной стороны треугольника (а) равен сумме квадратов двух его других сторон (b,с), образующих искомый угол (α), минус удвоенное произведение этих сторон (b,с) на косинус угла.

a 2 = b 2 + c 2 — 2bc cos (α)

Отсюда, косинус искомого угла равняется сумме квадратов смежных сторон (b, с) минус квадрат третей стороны треугольника (а), противолежащей искомому углу, и все это делится на удвоенное произведение смежных сторон:

cos (α) = (b 2 + c 2 — a 2 ) / 2bc

,
где а, b, с — стороны треугольника.
Используя теорему косинусов, определяем косинусы остальных углов. Величины углов в градусах находим по тригонометрической таблице.
Углы треугольника angle-trianglebangle-trianglec

как найти угол треугольника если известны 3 стороны

Пусть задан треугольник со сторонами a, b и с. При этом сумма длин двух любых сторон треугольника должна быть больше длины третьей стороны, то есть a+b>c, b+c>a и a+c>b. И необходимо найти градусную меру всех углов этого треугольника. Пусть угол между сторонами a и b обозначен как α, угол между b и c как β, а угол между c и a как γ.

Теорема косинусов звучит так: квадрат длины стороны треугольника равен сумме квадратов двух других длин его сторон минус удвоенное произведение этих длин сторон на косинус угла между ними. То есть составьте три равенства: a²=b²+c²−2×b×c×cos(β); b²=a²+c²−2×a×c×cos(γ); c²=a²+b²−2×a×b×cos(α).

Из полученных равенств выразите косинусы углов: cos(β)=(b²+c²−a²)÷(2×b×c); cos(γ)=(a²+c²−b²)÷(2×a×c); cos(α)=(a²+b²−c²)÷(2×a×b). Теперь, когда известны косинусы углов треугольника, чтобы найти сами углы воспользуйтесь таблицами Брадиса или возьмите из этих выражений арккосинусы: β=arccos(cos(β)); γ=arccos(cos(γ)); α=arccos(cos(α)).

Например, пусть a=3, b=7, c=6. Тогда cos(α)=(3²+7²−6²)÷(2×3×7)=11/21 и α≈58,4°; cos(β)=(7²+6²−3²)÷(2×7×6)=19/21 и β≈25,2°; cos(γ)=(3²+6²−7²)÷(2×3×6)=-1/9 и γ≈96,4°.

Эту же задачу можно решить другим способом через площадь треугольника. Сначала найдите полупериметр треугольника по формуле p=(a+b+c)÷2. Затем посчитайте площадь треугольника по формуле Герона S=√(p×(p−a)×(p−b)×(p−c)), то есть площадь треугольника равна квадратному корню из произведения полупериметра треугольника и разностей полупериметра и каждой из сторон треугольника.

С другой стороны, площадь треугольника равна половине произведения длин двух сторон на синус угла между ними. Получается S=0,5×a×b×sin(α)=0,5×b×c×sin(β)=0,5×a×c×sin(γ). Теперь из этой формулы выразите синусы углов и подставьте полученное в 5 шаге значение площади треугольника: sin(α)=2×S÷(a×b); sin(β)=2×S÷(b×c); sin(γ)=2×S÷(a×c). Таким образом, зная синусы углов, чтобы найти градусную меру, используйте таблицы Брадиса или посчитайте арксинусы этих выражений: β=arccsin(sin(β)); γ=arcsin(sin(γ)); α=arcsin(sin(α)).

Например, пусть дан такой же треугольник со сторонами a=3, b=7, c=6. Полупериметр равен p=(3+7+6)÷2=8, площадь S=√(8×(8−3)×(8−7)×(8−6))=4√5. Тогда sin(α)=2×4√5÷(3×7)=8√5/21 и α≈58,4°; sin(β)=2×4√5÷(7×6)=4√5/21 и β≈25,2°; sin(γ)=2×4√5÷(3×6)=4√5/9 и γ≈96,4°.

Как найти третий угол в треугольнике

Соавтор(ы): Grace Imson, MA. Грейс Имсон — преподаватель математики с более чем 40 годами опыта. В настоящее время преподает математику в Городском колледже Сан-Франциско, ранее работала на кафедре математики в Сент-Луисском университете. Преподавала математику на уровне начальной, средней и старшей школы, а также колледжа. Имеет магистерскую степень по педагогике со специализацией на руководстве и контроле, полученную в Сент-Луисском университете.

Количество просмотров этой статьи: 93 420.

В этой статье:

Найти третий угол треугольника, если вам известны значения двух других углов, очень легко. Все, что вам нужно сделать,- это вычесть сумму двух известных углов из 180°. Тем не менее, есть несколько других способов нахождения третьего угла треугольника (в зависимости от заданной вам задачи).

Метод 1 из 3:

Посредством двух других углов

Step 1 Сложите известные значения двух углов.

Сложите известные значения двух углов. Запомните: сумма углов в треугольнике всегда равна 180°. Поэтому, если вы знаете два из трех углов треугольника, то вы легко вычислите третий угол. Первое, что нужно сделать,- это сложить известные значения двух углов. Например, даны углы 80° и 65°. Сложите их: 80° + 65° = 145°.

Step 2 Вычтите сумму из 180°.

Вычтите сумму из 180°. Сумма углов в треугольнике равна 180°. Поэтому третий угол равен: 180° — 145° = 35°.

Step 3 Запишите ответ.

Запишите ответ. Теперь вы знаете, что третий угол равен 35°. Если вы сомневаетесь, просто проверьте ответ. Сумма трех углов должна быть равна 180°: 80° + 65° + 35° = 180°.

Метод 2 из 3:

Посредством переменных

Step 1 Запишите задачу.

Запишите задачу. Иногда вместо точных значений двух углов треугольника в задаче даны только несколько переменных, или переменные и значение угла. Например: найдите угол «х», если два других угла треугольника равны 2x и 24°.

Step 2 Сложите все значения (переменные и числа).

Сложите все значения (переменные и числа). х + 2x + 24° = 3x + 24

Step 3 Вычтите сумму из 180°.

  • 180° — (3x + 24°) = 0
  • 180° — 3x — 24° = 0
  • 156° — 3x = 0

Step 4 Найдите х.

Найдите х. Для этого обособьте члены с переменной на одной стороне уравнения, а числа – на другой: 156° = 3x. Теперь разделите обе части уравнения на 3, чтобы получить х = 52°. Это означает, что третий угол треугольника равен 52°. Другой угол, данный в условии как 2x, равен: 2*52° = 104°.

Step 5 Проверьте ответ.

Проверьте ответ. Для этого сложите числовые значения всех трех углов (сумма должна быть равна 180°): 52° + 104° + 24° = 180°.

Метод 3 из 3:

Посредством других методов

Step 1 Найдите третий угол равнобедренного треугольника.

  • Если один из равных углов 40°, то и другой равный угол 40°. Вы можете найти третий угол, вычтя сумму 40° + 40° = 80° из 180°: 180° — 80° = 100°.

Step 2 Найдите третий угол равностороннего треугольника.

Найдите третий угол равностороннего треугольника. В равностороннем треугольнике все стороны равны и все углы равны. Это означает, что любой угол в равностороннем треугольнике равен 60°. Проверьте это: 60° + 60° + 60° = 180°.

Step 3 Найдите третий угол прямоугольного треугольника.

Найдите третий угол прямоугольного треугольника. Например, дан прямоугольный треугольник, в котором один из углов равен 30°. Если это прямоугольный треугольник, то один из его углов равен 90°. Все, что вам нужно сделать, это сложить известные углы (30° + 90° = 120°) и вычесть эту сумму из 180°, то есть 180° — 120° = 60°. Третий угол равен 60°.

Предупреждения

  • Ошибка при сложении или вычитании приведет к неправильному ответу. Поэтому обязательно проверяйте ответ, даже когда вы уверены, что он правильный.

Дополнительные статьи

вычислить диагональ квадрата

вычислить диагональ квадрата

найти гипотенузу

найти гипотенузу

вычислить диагональ прямоугольника

вычислить диагональ прямоугольника

вычислить объем куба

вычислить объем куба

построить угол, равный данному углу

построить угол, равный данному углу

найти площадь четырехугольника

найти площадь четырехугольника

вычислить диаметр окружности

вычислить диаметр окружности

найти объем призмы

найти объем призмы

вычислять углы

вычислять углы

найти высоту треугольника

найти высоту треугольника

найти центр круга

найти центр круга

найти площадь пятиугольника

найти площадь пятиугольника

находить объем

находить объем

нарисовать шестиугольник

нарисовать шестиугольник

  1. http://www.virtualnerd.com/pre-algebra/geometry/triangles/angles-triangles/triangle-missing-variable-angles-example
  2. http://www.mathopenref.com/trianglesolving.html
  3. http://www.mathsteacher.com.au/year7/ch09_polygons/02_anglesum/sum.htm
  4. http://www.mathsisfun.com/algebra/trig-sine-law.html

Об этой статье

Преподаватель математики

Соавтор(ы): Grace Imson, MA. Грейс Имсон — преподаватель математики с более чем 40 годами опыта. В настоящее время преподает математику в Городском колледже Сан-Франциско, ранее работала на кафедре математики в Сент-Луисском университете. Преподавала математику на уровне начальной, средней и старшей школы, а также колледжа. Имеет магистерскую степень по педагогике со специализацией на руководстве и контроле, полученную в Сент-Луисском университете. Количество просмотров этой статьи: 93 420.

Нахождение углов треугольника по заданным сторонам

Нахождение углов треугольника по заданным сторонам с использованием теоремы косинусов.

triangle.JPG

От нашего пользователя поступил запрос на создание калькулятора, рассчитывающего углы треугольника по заданным сторонам — Расчет углов треугольника.

Для треугольника, в отличие от, скажем, четырехугольника, эта задача имеет решение, ибо треугольник можно однозначно определить по трем сторонам (а также по двум сторонам и углу между ними, и по стороне и двум прилежащим углам).

Стороны в треугольнике, кстати сказать, должны следовать неравенству треугольника, то есть, сумма любых двух сторон должна быть больше третьей стороны.
Математически (см. рисунок) это выражается системой

В случае невыполнения хотя бы одного из условий треугольник называют вырожденным. Собственно, это и не треугольник уже.

Идем дальше — при известных сторонах углы проще всего определить, пользуясь теоремой косинусов, частным случаем которой является теорема Пифагора (см. рисунок)

Калькулятор ниже рассчитывает углы по введенным длинам сторон. Если треугольник вырожденный, то в результате будут нули.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *