Как найти сторону в шестиугольной призме
Перейти к содержимому

Как найти сторону в шестиугольной призме

  • автор:

Площадь боковой поверхности шестиугольной призмы

Площадь боковой поверхности шестиугольной призмы

Площадь боковой поверхности шестиугольной призмы равна сумме шести площадей боковых граней.

Подставим сюда формулу площади прямоугольника, получим:

Вычислить, найти площадь боковой поверхности шестиугольной призмы

Copyright © FXYZ.ru, 2007 — 2024.
Мобильная β версия | полная

Правильная шестиугольная призма

На сайте уже были рассмотрены некоторые типы задач по стереометрии, которые входят в единый банк заданий экзамена по математике. Например, задания про составные многогранники .

Призма называется правильной если её боковые перпендикулярны основаниям и в основаниях лежит правильный многоугольник. То есть правильная призма – это прямая призма, у которой в основании правильный многоугольник.

Правильная шестиугольная призма – в основании правильный шестиугольник, боковые грани – прямоугольники.

В этой статье для вас задачи на решение призмы, в основании которой лежит правильный шестиугольник . Особенностей и сложностей в решении нет никаких. В чём суть? Дана правильная шестиугольная призма, требуется вычислить расстояние между двумя вершинами или найти заданный угол. Задачи на самом деле простые, в итоге решение сводится к нахождению элемента в прямоугольном треугольнике.

Используется теорема Пифагора и теорема косинусов . Необходимо знание определений тригонометрических функций в прямоугольном треугольнике.

Обязательно посмотрите информацию о правильном шестиугольнике в этой статье (пункт 6) . Ещё вам пригодится навык извлечения квадратного корня их большого числа. Можете посмотреть статью на решение многогранников, там тоже вычисляли расстояние между вершинами и углы.

Кратко: что представляет собой правильный шестиугольник?

Известно, что в правильном шестиугольнике стороны равны. Кроме этого, углы между сторонами тоже равны .

*Противолежащие стороны параллельны.

Дополнительная информация

Радиус окружности описанной около правильного шестиугольника равен его стороне. *Это подтверждается очень просто: если мы соединим противоположные вершины шестиугольника, то получим шесть равных равносторонних треугольников. Почему равносторонних?

У каждого треугольника угол при его вершине лежащей в центре равен 60 0 (360:6=60). Так как у треугольника две стороны имеющие общую вершину в центре равны (это радиусы описанной окружности), то каждый угол при основании такого равнобедренного треугольника так же равен 60 градусам.

То есть правильный шестиугольник, образно говоря, состоит как бы из шести равных равносторонних треугольников.

Какой полезный для решения задач факт ещё следует отметить? Угол при вершине шестиугольника (угол между его соседними сторонами) равен 120 градусам.

*Умышленно не коснулись формул правильного N-угольника. Данные формулы мы подробно рассмотрим в будущем, здесь они просто не нужны.

272533. В правильной шестиугольной призме ABCDEFA1B1C1D1E1F1 все ребра равны 48. Найдите расстояние между точками A и E1.

Рассмотрим прямоугольный треугольник AA 1 E 1 . По теореме Пифагора:

*Угол между сторонами правильного шестиугольника равен 120 градусам.

Отрезок АЕ 1 является гипотенузой, АА 1 и А 1 Е 1 катеты. Ребро АА 1 нам известно. Катет А 1 Е 1 мы можем найти используя используя теорему косинусов.

Теорема: Квадрат любой стороны треугольника равен сумме квадратов двух других его сторон без удвоенного произведения этих сторон на косинус угла между ними.

По теореме Пифагора:

*Обратите внимание, что 48 возводить в квадрат совсем не обязательно.

В правильной шестиугольной призме ABCDEFA1B1C1D1E1F1 все ребра равны 35. Найдите расстояние между точками B и E.

Рассмотрим правильный шестиугольник:

Сказано, что все рёбра равны 35, то есть сторона шестиугольника лежащего в основании равна 35. А так же, как уже сказано, радиус описанной около него окружности равен этому же числу.

273353. В правильной шестиугольной призме ABCDEFA1B1C1D1E1F1 все ребра равны сорока корням из пяти. Найдите расстояние между точками B и E1.

Рассмотрим прямоугольный треугольник BB 1 E 1 . По теореме Пифагора:

Отрезок B 1 E 1 равен двум радиусам описанной около правильного шестиугольника окружности, а её радиус равен стороне шестиугольника, то есть

273683. В правильной шестиугольной призме ABCDEFA1B1C1D1E1F1 все ребра равны 45. Найдите тангенс угла AD1D.

Рассмотрим прямоугольный треугольник ADD1, в котором AD равно диаметру окружности, описанной вокруг основания. Известно, что радиус окружности, описанной вокруг правильного шестиугольника равен его стороне.

В правильной шестиугольной призме ABCDEFA1B1C1D1E1F1 все ребра равны 23. Найдите угол DAB. Ответ дайте в градусах.

Рассмотрим правильный шестиугольник:

В нём углы между сторонами равны 120°. Значит,

Сама длина ребра не имеет значения, на величину угла она не влияет.

В правильной шестиугольной призме ABCDEFA1B1C1D1E1F1 все ребра равны 10. Найдите угол AC1C. Ответ дайте в градусах.

Рассмотрим прямоугольный треугольник AC1C:

Найдём AC . В правильном шестиугольнике углы между его сторонами равны 120 градусам, тогда по теореме косинусов для треугольника АВС :

Значит, угол AC 1 C равен 60 градусам.

274453. В правильной шестиугольной призме ABCDEFA1B1C1D1E1F1 все ребра равны 10. Найдите угол AC1C. Ответ дайте в градусах.

Рассмотрим треугольник AС 1 С, он прямоугольный. Вычислим тангенс указанного в условии угла и определим угол. Известно, что тангенс острого угла в прямоугольном треугольнике равен отношению противолежащего катета к прилежащему, то есть

Катет С1С = 10. Отрезок АС вычислим по теореме косинусов (это мы уже делали в первой задаче, запишем ещё раз):

В правильном шестиугольнике углы при вершинах равны 120 градусам, то есть

245364. В правильной шестиугольной призме ABCDEFA1B1C1D1E1F1 все ребра равны 1. Найдите расстояние между точками А и Е1.

245365. В правильной шестиугольной призме ABCDEFA1B1C1D1E1F1 все ребра равны 1. Найдите расстояние между точками В и Е.

245366. В правильной шестиугольной призме ABCDEFA1B1C1D1E1F1все ребра равны корню из пяти. Найдите расстояние между точками В и Е1.

245367. В правильной шестиугольной призме ABCDEFA1B1C1D1E1F1 все ребра равны 1. Найдите тангенс угла AD1D.

245368. В правильной шестиугольной призме ABCDEFA1B1C1D1E1F1 все ребра равны 1. Найдите угол DAB. Ответ дайте в градусах.

245369. В правильной шестиугольной призме ABCDEFA1B1C1D1E1F1 все ребра равны 1. Найдите угол AC1C. Ответ дайте в градусах.

На этом всё! Успеха Вам!

В состав ЕГЭ включены и другие задачи по стереометрии, и они довольно разнообразны. Обязательно будем их рассматривать, не пропустите! Успехов вам!

С уважением, Александр Крутицких.

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

Для вас другие записи этой рубрики:

  • Найдите объём многогранника
  • Объем параллелепипеда равен
  • Основанием прямой треугольной призмы
  • Если каждое ребро куба увеличить

найти боковую поверхность правильной шестиугольной призмы

, если сторона основания 3, а диагональ боковой грани 5. Помогите пожалуйста.

Лучший ответ

Эта задача решается устно: 3*6*4=72

Источник: Арифметика

Остальные ответы

сперва находим высоту по теореме пифагора. будет 4 .периметр умножаем на высоту

Похожие вопросы

Ваш браузер устарел

Мы постоянно добавляем новый функционал в основной интерфейс проекта. К сожалению, старые браузеры не в состоянии качественно работать с современными программными продуктами. Для корректной работы используйте последние версии браузеров Chrome, Mozilla Firefox, Opera, Microsoft Edge или установите браузер Atom.

Шестиугольная призма — это многогранник, две грани которого являются равными шестиугольниками, лежащими в параллельных плоскостях, а остальные грани (боковые грани) — параллелограммами, имеющими общие стороны с этими треугольниками.

Правильная шестиугольная призма

Правильная шестиугольная призма

Правильная шестиугольная призма — это шестиугольная призма у которой основания правильные шестиугольники (все стороны которых равны, углы между сторонами основания составляют 120 градусов), а боковые грани прямоугольники.

osnovaniya shestiugolnoj prizmy

Основания призмы являются равными правильными шестиугольниками.

bokovye storony shestiugolnoj prizmy

Боковые грани призмы являются прямоугольниками.

rebra shestiugolnoj prizmy

Боковые рёбра призмы параллельны и равны.

razmery shestiugolnoj prizmy

Размеры призмы можно выразить через длину стороны a и высоту h.

ploshchad poverhnosti shestiugolnoj prizmy

Площадь полной поверхности призмы равна сумме площади её боковой поверхности и удвоенной площади основания.

Формула площади поверхности шестиугольной призмы:

formula ploshchadi poverhnosti shestiugolnoj prizmy

obem shestiugolnoj prizmy

Объём призмы равен произведению её высоты на площадь основания.

Формула объема правильной шестиугольной призмы:

formula obema shestiugolnoj prizmy

radius cilindra shestiugolnoj prizmy

Правильная шестиугольная призма может быть вписана в цилиндр.

Формула радиуса цилиндра вписанной шестиугольной призмы:

formula radiusa cilindra shestiugolnoj prizmy

mnogogrannik dvojstvennyj shestiugolnoj prizme

Двойственным многогранником прямой призмы является бипирамида.

Исторически понятие «призма» возникло из латыни и означало — нечто отпиленное.

Анимация демонстрирует как две параллельные плоскости отрезая лишнее формируют два основания призмы. Из одной заготовки можно получить как правильную призму, так и наклонную призму.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *