Как найти сторону четырехугольника
Перейти к содержимому

Как найти сторону четырехугольника

  • автор:

Возможно ли найти 4ую сторону прямоугольника?

Доброго времени суток, друзья!
Прошу Вашей помощи в вопросе геометрии, по большому счету…натуральная житейская ситуация.
Можно ли математически найти 4ую сторону прямоугольника, если известно 3 его стороны, ширина и площадь?
Если это реально, то могли бы Вы кратко расписать с обоснованием, как это можно сделать?
Суть в том, что я с помощью фемиды пытаюсь решить спор по границе земельного участка. У участка сложились 3 стороны. (границы), а вот с 4ой проблема 🙁 «Эксперт» говорит, что это невозможно… но после его экспертизы, доверия к нему нет.
Спасите!

a0bd247cff3c4e30a197bdf7b8d7df6c.png

UPD: Простите пожалуйста, ввёл Вас в заблуждение. Это действительно не прямоугольник, а 4х угольник. Извините за не точность.

  • Вопрос задан более трёх лет назад
  • 3939 просмотров

7 комментариев

Оценить 7 комментариев

Если известны 3 стороны произвольного четырехугольника.как найти четвертую сторону?

Если в условии упоминается, что этот четырехугольник можно вписать в окружность, то AB*CD=AD*BC ( то есть произведение двух противоположных сторон равно произведению двух других противоположных сторон).

Остальные ответы
никак, мало данных

на 2 части раздели! будет 2 треугольника! найдеш 1треугольник найдеш и другой) а следовательно и сторону!

Похожие вопросы
Ваш браузер устарел

Мы постоянно добавляем новый функционал в основной интерфейс проекта. К сожалению, старые браузеры не в состоянии качественно работать с современными программными продуктами. Для корректной работы используйте последние версии браузеров Chrome, Mozilla Firefox, Opera, Microsoft Edge или установите браузер Atom.

Четырехугольники, вписанные в окружность. Теорема Птолемея

ОПРЕДЕЛЕНИЕ 1 . Окружностью, описанной около четырёхугольника, называют окружность, проходящую через все вершины четырёхугольника (рис.1). В этом случае четырёхугольник называют четырёхугольником, вписанным в окружность, или вписанным четырёхугольником .

Четырехугольники вписанные в окружность свойства теорема Птолемея

ТЕОРЕМА 1 . Если четырёхугольник вписан в окружность, то суммы величин его противоположных углов равны 180° .

ДОКАЗАТЕЛЬСТВО . Угол ABC является вписанным углом, опирающимся на дугу ADC (рис.1). Поэтому величина угла ABC равна половине угловой величины дуги ADC . Угол ADC является вписанным углом, опирающимся на дугу ABC . Поэтому величина угла ADC равна половине угловой величины дуги ABC . Отсюда вытекает, что сумма величин углов ABC и ADC равна половине угловой величины дуги, совпадающей со всей окружностью, т.е. равна 180° .

Если рассмотреть углы BCD и BAD , то рассуждение будет аналогичным.

Теорема 1 доказана.

ТЕОРЕМА 2 (Обратная к теореме 1) . Если у четырёхугольника суммы величин его противоположных углов равны 180°, то около этого четырёхугольника можно описать окружность.

Докажем теорему 2 методом «от противного».

С этой целью рассмотрим окружность, проходящую через вершины A , B и С четырёхугольника, и предположим, что эта окружность не проходит через вершину D . Приведём это предположение к противоречию.

Рассмотрим сначала случай, когда точка D лежит внутри круга (рис.2).

Четырехугольники вписанные в окружность свойства теорема Птолемея

Продолжим отрезок CD за точку D до пересечения с окружностью в точке E , и соединим отрезком точку E с точкой A (рис.2). Поскольку четырёхугольник ABCE вписан в окружность, то в силу теоремы 1 сумма величин углов ABC и AEC равна 180° . При этом сумма величин углов ABC и ADC так же равна 180° по условию теоремы 2. Отсюда вытекает, что угол ADC равен углу AEC . Возникает противоречие, поскольку угол ADC является внешним углом треугольника ADE и, конечно же, его величина больше, чем величина угла AEC , не смежного с ним.

Случай, когда точка D оказывается лежащей вне круга, рассматривается аналогично.

Теорема 2 доказана.

Перечисленные в следующей таблице свойства вписанных четырёхугольников непосредственно вытекают из теорем 1 и 2.

Четырехугольники вписанные в окружность свойства теорема Птолемея

Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.

Четырехугольники вписанные в окружность свойства теорема Птолемея

Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.

Четырехугольники вписанные в окружность свойства теорема Птолемея

Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.

Четырехугольники вписанные в окружность свойства теорема Птолемея

Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.

Четырехугольники вписанные в окружность свойства теорема Птолемея

Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:

где a, b, c, d – длины сторон четырёхугольника, а p – полупериметр, т.е.

Теорема Птолемея

ТЕОРЕМА ПТОЛЕМЕЯ . Произведение диагоналей вписанного четырёхугольника равно сумме произведений противоположных сторон.

ДОКАЗАТЕЛЬСТВО . Рассмотрим произвольный четырёхугольник ABCD , вписанный в окружность (рис.3).

Четырехугольники вписанные в окружность свойства теорема Птолемея

Докажем, что справедливо равенство:

Для этого выберем на диагонали AC точку E так, чтобы угол ABD был равен углу CBE (рис. 4).

Четырехугольники вписанные в окружность свойства теорема Птолемея

Заметим, что треугольник ABD подобен треугольнику BCE . Действительно, у этих треугольников по два равных угла: угол ABD равен углу CBE (по построению точки E ), угол ADB равен углу ACB (эти углы являются вписанными углами, опирающимися на одну и ту же дугу). Следовательно, справедлива пропорция:

откуда вытекает равенство:

Заметим, что треугольник ABE подобен треугольнику BCD . Действительно, у этих треугольников по два равных угла: угол ABE равен углу DBC (углы ABD и EBC равны по построению, угол DBE – общий), угол BAC равен углу BDC (эти углы являются вписанными углами, опирающимися на одну и ту же дугу). Следовательно, справедлива пропорция:

откуда вытекает равенство:

Складывая равенства (1) и (2), получаем:

Теорема Птолемея доказана.

Справочник по математике для школьников

  • Арифметика
  • Алгебра
  • Тригонометрия
  • Геометрия (планиметрия)
  • Геометрия (стереометрия)
  • Элементы математического анализа
  • Вероятность и статистика

Геометрия (планиметрия)

  • Основные фигуры планиметрии
    • Фигуры, составляющие основу планиметрии
    • Углы на плоскости
    • Теорема Фалеса
    • Углы, связанные с окружностью
    • Признаки параллельности прямых
    • Типы треугольников. Признаки равенства треугольников
    • Свойства и признаки равнобедренного треугольника
    • Свойства и признаки прямоугольного треугольника
    • Свойства сторон и углов треугольника
    • Подобие треугольников
    • Теорема Пифагора. Теорема косинусов
    • Биссектриса треугольника
    • Медиана треугольника
    • Высота треугольника. Задача Фаньяно
    • Средние линии треугольника
    • Теорема Чевы
    • Теорема Менелая
    • Описанная окружность. Теорема синусов
    • Формулы для стороны, периметра и площади правильного треугольника
    • Площадь треугольника
    • Окружность, вписанная в треугольник. Основное свойство биссектрисы угла
    • Вневписанные окружности
    • Четырехугольники
    • Параллелограммы
    • Трапеции
    • Четырехугольники, вписанные в окружность. Теорема Птолемея
    • Описанные четырехугольники
    • Площади четырехугольников
    • Многоугольники
    • Правильные многоугольники
    • Углы, связанные с окружностью
    • Отрезки и прямые, связанные с окружностью. Теорема о бабочке
    • Две окружности на плоскости. Общие касательные к двум окружностям
    • Площадь круга и его частей. Длина окружности и ее дуг
    • Окружность, описанная около треугольника. Теорема синусов
    • Окружность, вписанная в треугольник. Основное свойство биссектрисы угла
    • Вневписанные окружности
    • Четырехугольники, вписанные в окружность. Теорема Птолемея
    • Описанные четырехугольники
    • Площади четырехугольников
    • Площадь треугольника
    • Вывод формул Герона и Брахмагупты
    • Средние линии
    • Геометрические места точек на плоскости
    • Движения плоскости. Теорема Шаля. Аффинные преобразования плоскости

    Учебные пособия для школьников

    • Задачи на проценты
    • Квадратный трехчлен
    • Метод координат на плоскости
    • Прогрессии
    • Решение алгебраических уравнений
    • Решение иррациональных неравенств
    • Решение логарифмических неравенств
    • Решение логарифмических уравнений
    • Решение показательных неравенств
    • Решение показательных уравнений
    • Решение рациональных неравенств
    • Решение тригонометрических уравнений
    • Степень с рациональным показателем
    • Системы уравнений
    • Тригонометрия в ЕГЭ по математике
    • Уравнения и неравенства с модулями
    • Фигуры на координатной плоскости, заданные неравенствами

    Демоверсии ЕГЭ

    • Демонстрационные варианты ЕГЭ по английскому языку
    • Демонстрационные варианты ЕГЭ по биологии
    • Демонстрационные варианты ЕГЭ по географии
    • Демонстрационные варианты ЕГЭ по информатике
    • Демонстрационные варианты ЕГЭ по испанскому языку
    • Демонстрационные варианты ЕГЭ по истории
    • Демонстрационные варианты ЕГЭ по китайскому языку
    • Демонстрационные варианты ЕГЭ по литературе
    • Демонстрационные варианты ЕГЭ по математике
    • Демонстрационные варианты ЕГЭ по немецкому языку
    • Демонстрационные варианты ЕГЭ по обществознанию
    • Демонстрационные варианты ЕГЭ по русскому языку
    • Демонстрационные варианты ЕГЭ по физике
    • Демонстрационные варианты ЕГЭ по французскому языку
    • Демонстрационные варианты ЕГЭ по химии
    • Итоговое сочинение (изложение) в 11 классе

    Демоверсии ОГЭ

    • Демонстрационные варианты ОГЭ по английскому языку
    • Демонстрационные варианты ОГЭ по биологии
    • Демонстрационные варианты ОГЭ по географии
    • Демонстрационные варианты ОГЭ по информатике
    • Демонстрационные варианты ОГЭ по испанскому языку
    • Демонстрационные варианты ОГЭ по истории
    • Демонстрационные варианты ОГЭ по литературе
    • Демонстрационные варианты ОГЭ по математике
    • Демонстрационные варианты ОГЭ по немецкому языку
    • Демонстрационные варианты ОГЭ по обществознанию
    • Демонстрационные варианты ОГЭ по русскому языку
    • Демонстрационные варианты ОГЭ по физике
    • Демонстрационные варианты ОГЭ по французскому языку
    • Демонстрационные варианты ОГЭ по химии
    • Итоговое собеседование по русскому языку в 9 классе

    Задание 6. Математика ЕГЭ. В четырехугольнике ABCD вписана окружность. АВ = 23, ВС = 9 и CD = 12.

    В четырехугольнике ABCD вписана окружность. АВ = 23, ВС = 9 и CD = 12. Найдите четвертую сторону четырехугольника.

    Задание6в1

    Решение:

    В любом описанном четырехугольнике суммы противоположных сторон равны, т. е.

    Ответ: 26

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *