Как найти дифференциал неявной функции
Перейти к содержимому

Как найти дифференциал неявной функции

  • автор:

Конев В.В. Дифференцирование функций

Дифференцирование неявно заданных функций

Дифференцирование функций

Основные теоремы

Формула Тейлора

Пример. Пусть функция удовлетворяет уравнению

Продифференцируем обе части этого уравнения по переменной x:

Затем сгруппируем в одной части слагаемые, содержащие y‘, а в другой части – остальные слагаемые:

Дифференцирование функции, заданной неявно

  1. Примеры
    ≡ x^2/(1+y)
    cos 2 (2x+y) ≡ (cos(2*x+y))^2
    ≡ 1+(x-y)^(2/3)

см. также Производная от параметрической функции Пример 1. Найти производную y’ , не решая уравнения: x 3 – x 2 y – x 2 y 4 + 5 = 0 относительно y .
Решение. Так как в правой части уравнения стоит нуль, а производная постоянной равна нулю, то .
Применяя почленное дифференцирование, найдем 3x 2 – 2xy – x 2 y’ – 2xy 4 – 4x 2 y 3 y’ = 0, откуда . Пример 2. Найти y’ функции, заданной неявно уравнением y*lnx – x 2 e y + 1 = 0 (x>0).
Решение. (производную от e y берем как производную сложной функции). Разрешая уравнение относительно y’ (что не всегда возможно), найдем . Пример 3. Найти производную y’x функции y(x), заданной неявно: x 4 + x 2 y + y 3 + 5 = 0.
Решение.
Продифференцируем уравнение по х, рассматривая у как функцию от х, и решим полученное уравнение относительно y’x.
.

ЕГЭ по математике
Yandex.Просвещение представляет бесплатные видеокурсы по ЕГЭ с возможностью прохождения тестов
Упростить логическое выражение

Решение по шагам
( a →c)→ b → a
Упростим функцию, используя основные законы логики высказываний.
Замена импликации: A → B = A v B

Учебно-методический

√ курсы переподготовки и повышения квалификации
√ вебинары
√ сертификаты на публикацию методического пособия

  • Задать вопрос или оставить комментарий
  • Помощь в решении
  • Поиск
  • Поддержать проект

Правила ввода данных

Задать свои вопросы или оставить замечания можно внизу страницы в разделе Disqus .
Можно также оставить заявку на помощь в решении своих задач у наших проверенных партнеров (здесь или здесь).

Поиск

Задать свои вопросы или оставить замечания можно внизу страницы в разделе Disqus .
Можно также оставить заявку на помощь в решении своих задач у наших проверенных партнеров (здесь или здесь).

Производная функции, заданной неявно.
Производная параметрически заданной функции

В данной статье мы рассмотрим еще два типовых задания, которые часто встречаются в контрольных работах по высшей математике. Для того чтобы успешно освоить материал, необходимо уметь находить производные хотя бы на среднем уровне. Научиться находить производные практически с нуля можно на двух базовых уроках Как найти производную? Примеры решений и Производная сложной функции. Если с навыками дифференцирования всё в порядке, тогда поехали.

Производная функции, заданной неявно

Или короче – производная неявной функции. Что такое неявная функция? Давайте сначала вспомним само определение функции одной переменной:

Функция одной переменной – это правило, по которому каждому значению независимой переменной соответствует одно и только одно значение функции .

Переменная называется независимой переменной или аргументом.
Переменная называется зависимой переменной или функцией.

До сих пор мы рассматривали функции, заданные в явном виде. Что это значит? Устроим разбор полётов на конкретных примерах.

Мы видим, что слева у нас одинокий «игрек», а справа – только «иксы». То есть, функция в явном виде выражена через независимую переменную .

Рассмотрим другую функцию:

Здесь переменные и расположены «вперемешку». Причем никакими способами невозможно выразить «игрек» только через «икс». Что это за способы? Перенос слагаемых из части в часть со сменой знака, вынесение за скобки, перекидывание множителей по правилу пропорции и др. Перепишите равенство и попробуйте выразить «игрек» в явном виде: . Можно крутить-вертеть уравнение часами, но у вас этого не получится.

Разрешите познакомить: – пример неявной функции.

В курсе математического анализа доказано, что неявная функция существует (однако не всегда), у неё есть график (точно так же, как и у «нормальной» функции). У неявной функции точно так же существует первая производная, вторая производная и т.д. Как говорится, все права секс-меньшинств соблюдены.

И на этом уроке мы научимся находить производную от функции, заданной неявно. Это не так сложно! Все правила дифференцирования, таблица производных элементарных функций остаются в силе. Разница в одном своеобразном моменте, который мы рассмотрим прямо сейчас.

Да, и сообщу хорошую новость – рассмотренные ниже задания выполняются по довольно жесткому и чёткому алгоритму без камня перед тремя дорожками.

Найти производную от функции, заданной неявно

1) На первом этапе навешиваем штрихи на обе части:

2) Используем правила линейности производной (первые два правила урока Как найти производную? Примеры решений):

3) Непосредственное дифференцирование.
Как дифференцировать и совершенно понятно. Что делать там, где под штрихами есть «игреки»?

– просто до безобразия, производная от функции равна её производной: .

Как дифференцировать
Здесь у нас сложная функция. Почему? Вроде бы под синусом всего одна буква «игрек». Но, дело в том, что всего одна буква «игрек» – САМА ПО СЕБЕ ЯВЛЯЕТСЯ ФУНКЦИЕЙ (см. определение в начале урока). Таким образом, синус – внешняя функция, – внутренняя функция. Используем правило дифференцирования сложной функции :

Произведение дифференцируем по обычному правилу :

Обратите внимание, что – тоже сложная функция, любой «игрек с наворотами» – сложная функция:

Само оформление решения должно выглядеть примерно так:

Если есть скобки, то раскрываем их:

4) В левой части собираем слагаемые, в которых есть «игрек» со штрихом. В правую часть – переносим всё остальное:

5) В левой части выносим производную за скобки:

6) И по правилу пропорции сбрасываем эти скобки в знаменатель правой части:

Производная найдена. Готово.

Интересно отметить, что в неявном виде можно переписать любую функцию. Например, функцию можно переписать так: . И дифференцировать её по только что рассмотренному алгоритму. На самом деле фразы «функция, заданная в неявном виде» и «неявная функция» отличаются одним смысловым нюансом. Фраза «функция, заданная в неявном виде» более общая и корректная, – эта функция задана в неявном виде, но здесь можно выразить «игрек» и представить функцию в явном виде. Под словами же «неявная функция» чаще понимают «классическую» неявную функцию, когда «игрек» выразить нельзя.

Следует также отметить, что «неявное уравнение» может неявно задавать сразу две или даже бОльшее количество функций, так, например, уравнение окружности неявно задаёт функции , , которые определяют полуокружности. Но, в рамках данной статьи, мы не будем делать особого различия между терминами и нюансами, это была просто информация для общего развития.

Второй способ решения

Внимание! Со вторым способом можно ознакомиться только в том случае, если Вы умеете уверенно находить частные производные. Начинающие изучать математический анализ и чайники, пожалуйста, не читайте и пропустите этот пункт, иначе в голове будет полная каша.

Найдем производную неявной функции вторым способом.

Переносим все слагаемые в левую часть:

И рассматриваем функцию двух переменных:

Тогда нашу производную можно найти по формуле
Найдем частные производные:

Второй способ решения позволяет выполнить проверку. Но оформлять им чистовой вариант задания нежелательно, поскольку частные производные осваивают позже, и студент, изучающий тему «Производная функции одной переменной», знать частные производные как бы еще не должен.

Рассмотрим еще несколько примеров.

Найти производную от функции, заданной неявно

Навешиваем штрихи на обе части:

Используем правила линейности:

Раскрываем все скобки:

Переносим все слагаемые с в левую часть, остальные – в правую часть:

В левой части выносим за скобку:

Найти производную от функции, заданной неявно

Полное решение и образец оформления в конце урока.

Не редкость, когда после дифференцирования возникают дроби. В таких случаях от дробей нужно избавляться. Рассмотрим еще два примера.

Найти производную от функции, заданной неявно

Заключаем обе части под штрихи и используем правило линейности:

Дифференцируем, используя правило дифференцирования сложной функции и правило дифференцирования частного :

Теперь нам нужно избавиться от дроби. Это можно сделать и позже, но рациональнее сделать сразу же. В знаменателе дроби находится . Умножаем каждое слагаемое каждой части на . Если подробно, то выглядеть это будет так:

Иногда после дифференцирования появляется 2-3 дроби. Если бы у нас была еще одна дробь, например, , то операцию нужно было бы повторить – умножить каждое слагаемое каждой части на

Далее алгоритм работает стандартно, после того, как все скобки раскрыты, все дроби устранены, слагаемые, где есть «игрек штрих» собираем в левой части, а в правую часть переносим всё остальное:

В левой части выносим за скобку:

Найти производную от функции, заданной неявно

Это пример для самостоятельного решения. Единственное, в нём, перед тем как избавиться от дроби, предварительно нужно будет избавиться от трехэтажности самой дроби. Полное решение и ответ в конце урока.

О том, как найти производную 2-го, 3-го и более высоких порядков от неявно заданной функции, читайте в статье Производные высших порядков.

Производная параметрически заданной функции

Не напрягаемся, в этом параграфе тоже всё достаточно просто. Можно записать общую формулу параметрически заданной функции, но, для того, чтобы было понятно, я сразу запишу конкретный пример. В параметрической форме функция задается двумя уравнениями: . Частенько уравнения записывают не под фигурными скобками, а последовательно: , .

Переменная называется параметром и может принимать значения от «минус бесконечности» до «плюс бесконечности». Рассмотрим, например, значение и подставим его в оба уравнения: . Или по человечески: «если икс равен четырем, то игрек равно единице». На координатной плоскости можно отметить точку , и эта точка будет соответствовать значению параметра . Аналогично можно найти точку для любого значения параметра «тэ». Как и для «обычной» функции, для американских индейцев параметрически заданной функции все права тоже соблюдены: можно построить график, найти производные и т.д. Кстати, если есть надобность построить график параметрически заданной функции, можете воспользоваться моей программой.

В простейших случаях есть возможность представить функцию в явном виде. Выразим из первого уравнения параметр: – и подставим его во второе уравнение: . В результате получена обыкновенная кубическая функция.

В более «тяжелых» случаях такой фокус не прокатывает. Но это не беда, потому что для нахождения производной параметрической функции существует формула:

Находим производную от «игрека по переменной тэ»:

Все правила дифференцирования и таблица производных справедливы, естественно, и для буквы , таким образом, какой-то новизны в самом процессе нахождения производных нет. Просто мысленно замените в таблице все «иксы» на букву «тэ».

Находим производную от «икса по переменной тэ»:

Теперь только осталось подставить найденные производные в нашу формулу:

Готово. Производная, как и сама функция, тоже зависит от параметра .

Что касается обозначений, то в формуле вместо записи можно было просто записать без подстрочного индекса, поскольку это «обычная» производная «по икс». Но в литературе всегда встречается вариант , поэтому я не буду отклоняться от стандарта.

Найти производную от функции, заданной параметрически

В данном случае:

Особенностью нахождения производной параметрической функции является тот факт, что на каждом шаге результат выгодно максимально упрощать. Так, в рассмотренном примере при нахождении я раскрыл скобки под корнем (хотя мог этого и не делать). Велик шанс, что при подстановке и в формулу многие вещи хорошо сократятся. Хотя встречаются, конечно, примеры и с корявыми ответами.

Найти производную от функции, заданной параметрически

Это пример для самостоятельного решения.

В статье Простейшие типовые задачи с производной мы рассматривали примеры, в которых требовалось найти вторую производную функции. Для параметрически заданной функции тоже можно найти вторую производную, и находится она по следующей формуле: . Совершенно очевидно, что для того чтобы найти вторую производную, нужно сначала найти первую производную.

Найти первую и вторую производные от функции, заданной параметрически

Сначала найдем первую производную.
Используем формулу

В данном случае:

Подставляем найденные производные в формулу. В целях упрощений используем тригонометрическую формулу :

Я заметил, что в задаче на нахождение производной параметрической функции довольно часто в целях упрощений приходится использовать тригонометрические формулы. Помните их или держите под рукой, и не пропускайте возможность упростить каждый промежуточный результат и ответы. Зачем? Сейчас нам предстоит взять производную от , и это явно лучше, чем находить производную от .

Найдем вторую производную.
Используем формулу: .

Посмотрим на нашу формулу. Знаменатель уже найден на предыдущем шаге. Осталось найти числитель – производную от первой производной по переменной «тэ»:

Осталось воспользоваться формулой:

Для закрепления материала предлагаю еще пару примеров для самостоятельного решения.

Найти и для функции, заданной параметрически

Найти и для функции, заданной параметрически

Надеюсь, это занятие было полезным, и Вы теперь с лёгкость сможете находить производные от функций, заданных неявно и от параметрических функций.

Решения и ответы:

Пример 7: Решение:
Используем формулу
В данном случае:

Таким образом:

Пример 9: Решение: Найдем первую производную.
Используем формулу: . В данном случае:

Найдем вторую производную, используя формулу .

Пример 10: Решение:
Используем формулу: . В данном случае:

Таким образом:

Вторая производная:

Автор: Емелин Александр

Блог Емелина Александра

(Переход на главную страницу)

Zaochnik.com – профессиональная помощь студентам,

cкидкa 15% на первый зaкaз, при оформлении введите прoмoкoд: 5530-hihi5

© Copyright mathprofi.ru, Александр Емелин, 2010-2024. Копирование материалов сайта запрещено

Как найти частные производные неявно заданной функции?

Почти так же, как и производную неявной функции одной переменной. С поправкой на особенности дифференцирования ФНП, которые мы подробно разобрали на уроках Частные производные функции двух и трёх переменных. …На данной странице, думается, задержались калачи тёртые, и поэтому, перефразируя известного киногероя, я буду грузить вас аккуратно, но сильно =)

Начнём с функции двух переменных , неявный вид которой чаще всего обозначают уравнением. Обе формы уже неоднократно встречались в предыдущих статьях раздела, но, тем не менее, элементарный пример:

– функция плоскости в явном виде;
– та же функция, заданная неявно.

Последняя запись, как вы прекрасно знаете – есть не что иное, как общее уравнение плоскости, из которого легко получить функциональный вид. Однако сегодня нас мало интересует, можно ли выразить «зет» или нельзя, поскольку принципиальный алгоритм дифференцирования неявно заданной функции совершенно от этого не зависит. Давайте вспомним общую схему решения:

Найти частные производные 1-го порядка функции

Решение: Найдём . Сначала на обе части уравнения «навешиваем» штрихи с «иксовым» подстрочным индексом:

Далее пользуемся тривиальным правилом :

– это, очевидно, и есть наша частная производная , таким образом:

И на завершающем шаге выражаем результат:

Аналогично с частной производной по «игрек»:

Ответ:

Естественно, что производные получились точно такими же, что и при дифференцировании «обычной» функции:

Но то была, конечно же, шутка:

Дана функция . Найти частные производные 1-го и 2-го порядков.

Слишком просто? Я бы не спешил с выводами 😉

Решение: сначала найдём частные производные 1-го порядка. По «икс»:

В правой части находится «живой» множитель «икс», а значит, необходимо применить правило дифференцирования произведения :

Поскольку буква «зет» САМА ПО СЕБЕ ЯВЛЯЕТСЯ ФУНКЦИЕЙ (), то при нахождении следует использовать правило дифференцирования сложной функции . Тоже знакомый вам мотив! В данном случае внешняя функция – это степень, а внутренняя функция – это собственно функция «зет»:

Теперь в левой части нужно собрать слагаемые, которые содержат производную, а справа – всё остальное:

Выносим за скобки и сбрасываем множитель в правую часть:

Найдём частную производную по «игрек»:

Так как «икс» считается константой, то в правой части сразу выносим его за знак производной:

Как и для функции одной переменной, существует второй способ решения, его слёзно попросили разобрать те, кого я замучил первым способом 🙂 Берём исходное уравнение , переносим все слагаемые в одну часть: и рассматриваем функцию трёх переменных . Тогда частные производные можно найти по следующим формулам:

И мучения превращаются в удовольствие:

Найдём частные производные 2-го порядка. Как я уже рекомендовал, сначала выгоднее найти смешанные частные производные и убедиться, что , проверив тем самым правильность предыдущих действий.

Как найти производную ? Существует прямой путь с применением правила , но в данном случае он не очень удобен. Для дифференцирования по «игрек» лучше выбрать не финальную частную производную , а предшествующее равенство и «навесить» на обе его части «игрековые» штрихи:

Этот трюк, кстати, не нов – о нём я рассказывал на уроке Производные высших порядков.

Слева используем правило и не забываем, что «икс» считается константой:

Слагаемое с нужной нам производной оставляем слева:

Производные высших порядков по возможности принято выражать только через «икс», «игрек» и «зет». А такая возможность здесь более чем реалистична – подставим найденные ранее в правую часть и упростим результат:

И по завершению генеральной уборки сбрасываем множитель :

Найдём «родственницу» . Опять – для дифференцирования по «икс» можно взять не саму производную , а предшествующее равенство , но ради разнообразия я пойду прямой дорогой:

Таким образом, , что мы и хотели увидеть.

На завершающем этапе предельно внимательно разбираемся с производными .

Вторую производную по «икс» рациональнее найти не прямым дифференцированием первой производной (получится громоздкая дробь), а из равенства . Навешиваем «иксовые» штрихи на обе части:

Слева дважды применяем правило , главное, тут не запутаться:

Подставляем в правую часть :

Следует отметить, что здесь существует очень хорошая возможность проверить результат. Для этого вторую производную нужно взять напрямую: и таки разобраться с громоздкой дробью.

Тяжеловато? Ну я же обещал =)

Впрочем, оставшаяся производная простецкая, используем дифференцирование «в лоб»:

Проверка тут зеркальна – дифференцируем по «игрек» обе части равенства

И самый приятный момент:

Ответ:

Как найти частные производные более высоких порядков? По тем же принципам. Так, например, производная отыскивается как прямым дифференцированием , так и навешиванием «игрековых» штрихов на левую и правую часть равенства .

Какой из этих двух способов удобнее – нужно смотреть по ситуации.

Аналогичное задание для самостоятельного решения:

Найти частные производные 1-го и 2-го порядков неявно заданной функции.

К слову, из этой солянки элементарно выражается «зет», но сейчас весь интерес состоит в том, чтобы провести решение «неявным образом». Примерный образец чистового оформления задачи в конце урока.

Техника нахождения частных производных от неявно заданной функции разобрана до мелочей, но остался ещё один небольшой вопрос: как в подобных случаях находить частные производные в какой-либо конкретной точке? Рассмотрим пару задач на эту тему:

Вычислить значения частных производных функции в точке .

Решение: на всякий случай удостоверимся, что точка действительно принадлежит поверхности . Для этого подставим координаты в левую часть:
, что и требовалось проверить.

Найдём частную производную по «икс»:

Поскольку «игрек» считается константой, то – тоже константа. Но особое внимание обратите на – тут двойное вложение: под степень вложен косинус, а под косинус – функция «зет»:

Для удобства уберём минусы (умножим обе части на –1) и воспользуемся известной тригонометрической формулой :

Производную в точке можно вычислить уже сейчас – для этого следует подставить её координаты в левую часть и выразить :

Но в данном случае более прост «цивилизованный» путь, сначала выражаем производную:

Затем находим производную в точке:

Аналогично разбираемся с частной производной по «игрек»:

Ответ:

Для самостоятельного решения:

Вычислить значения частных производных функции в точке .

Примеры № 4, 5 взяты из задачника Рябушко и желающие могут раздобыть там ещё около 30 примеров (ИДЗ 10.1), кстати, с правильными ответами!

На практике вам могут предложить похожую задачу, но не с точкой, которая принадлежит самой поверхности, а с точкой из плоскости . В этом случае значение придётся отыскать самостоятельно. Например, если дана функция и точка , то выполняем подстановку :
, откуда следует, что .

Частные производные неявно заданной функции трёх переменных

Задачка редкая, но пропускать не стОит. Советую сделать перерыв после предыдущего параграфа (особенно, если вы что-то порешали), поскольку в функции трёх переменных буква «зет» – уже независимая переменная, и по этой причине вас будет неслабо подглючивать.

Всё очень похоже – разве что аргумент один прибавился. Неявно заданную функцию трёх переменных обычно обозначают через , и её дифференцирование осуществляется по тем же принципам:

Найти частные производные первого порядка функции

Решение: итак, требуется найти , способ первый, «классический»:

Найдём частную производную по «икс»:

Что тут нужно держать на заметке? и – это «живые» буквы, а – константы:

Собираем слагаемые с производной в левой части и выражаем результат:

Найдём частную производную по «игрек» ( – константы):

В левой части дела заметно усложнились:

Распишу всё максимально подробно:

Это была, пожалуй, наиболее трудная производная.

И, наконец, навешиваем на обе части «зетовые» штрихи ( – константы):

Теперь способ второй, по пожеланиям учащихся. Берём исходное уравнение , переносим все слагаемые в одну часть: и рассматриваем функцию четырёх переменных . Тогда наши частные производные отыскиваются по следующим формулам:

Когда мы находим производную по какой-либо переменной, то три другие переменные считаются константами:

Решать можно и так, и так, а ещё лучше – обоими способами, дабы выполнить проверку.

Ответ:

И чисто символическое заключительное задание для самостоятельной работы:

Найти частные производные первого порядка неявно заданной функции

В образце я решил задачу 1-м способом, и вас есть увлекательная возможность повторить мой путь. И, конечно же, протестируйте способ 2-й , выполним тем самым проверку.

Надеюсь, к концу статьи вы сохранили форму и бодрое расположение духа, потому что высшая математика ещё потребует некоторых затрат энергии =)

Жду вас на новых уроках!

Решения и ответы:

Пример 3: Решение: найдём частные производные 1-го порядка:

Найдём частные производные 2-го порядка:

Дифференцируем по «игрек» обе части равенства :

В правую часть подставим :

В целях более эффективной проверки вторую смешанную производную найдём прямым дифференцированием:

Подставим :

Что и требовалось проверить

Дифференцируем по «икс» обе части равенства :

Подставим в правую часть :

Дифференцируем по «игрек» обе части равенства :

Подставим в правую часть :

Пример 5: Решение:

Пример 7: Решение: найдём частные производные первого порядка:

Автор: Емелин Александр

Блог Емелина Александра

(Переход на главную страницу)

Zaochnik.com – профессиональная помощь студентам,

cкидкa 15% на первый зaкaз, при оформлении введите прoмoкoд: 5530-hihi5

© Copyright mathprofi.ru, Александр Емелин, 2010-2024. Копирование материалов сайта запрещено

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *