Как найти диагональ ромба зная периметр и угол
Перейти к содержимому

Как найти диагональ ромба зная периметр и угол

  • автор:

Ромб. Формулы, признаки и свойства ромба

Ромб — это параллелограмм, который имеет равные стороны. Если у ромба все углы прямые, тогда он называется квадратом.

Ромбы отличаются между собой размером стороны и размером углов.

Изображение с обозначениями Изображение с обозначениями
Рис.1 Рис.2

Признаки ромба

Параллелограмм ABCD будет ромбом, если выполняется хотя бы одно из следующих условий:
1. Две его смежные стороны равны (отсюда следует, что все стороны равны):
2. Его диагонали пересекаются под прямым углом:
3. Одна из диагоналей (биссектриса) делит содержащие её углы пополам:

∠BAC = ∠CAD или ∠BDA = ∠BDC

4. Если все высоты равны:
5. Если диагонали делят параллелограмм на четыре равных прямоугольных треугольника:

Δ ABO = Δ BCO = Δ CDO = Δ ADO

6. Если в параллелограмм можно вписать круг.

Основные свойства ромба

1. Имеет все свойства параллелограмма
2. Диагонали перпендикулярны:
3. Диагонали являются биссектрисами его углов:

∠BAC = ∠CAD, ∠ABD = ∠DBC, ∠BCA = ∠ACD, ∠ADB = ∠BDC

4. Сумма квадратов диагоналей равна квадрату стороны умноженному на четыре:

AC 2 + BD 2 = 4AB 2

5. Точка пересечения диагоналей называется центром симметрии ромба.
6. В любой ромб можно вписать окружность.
7. Центром окружности вписанной в ромб будет точка пересечения его диагоналей.

Сторона ромба

Формулы определения длины стороны ромба:

1. Формула стороны ромба через площадь и высоту:
2. Формула стороны ромба через площадь и синус угла:

a = √ S
√ sinα
a = √ S
√ sinβ

3. Формула стороны ромба через площадь и радиус вписанной окружности:
4. Формула стороны ромба через две диагонали:

a = √ d 1 2 + d 2 2
2

5. Формула стороны ромба через диагональ и косинус острого угла ( cos α ) или косинус тупого угла ( cos β ):

a = d 1
√ 2 + 2 cosα
a = d 2
√ 2 — 2 cosβ

6. Формула стороны ромба через большую диагональ и половинный угол:

a = d 1
2 cos ( α /2)
a = d 1
2 sin ( β /2)

7. Формула стороны ромба через малую диагональ и половинный угол:

a = d 2
2 cos ( β /2)
a = d 2
2 sin ( α /2)

8. Формула стороны ромба через периметр:

Диагонали ромба

Определение.
Диагональю ромба называется любой отрезок соединяющий две вершины противоположных углов ромба.
Ромб имеет две диагонали — длинную d 1, и короткую — d 2

Формулы определения длины диагонали ромба:

1. Формулы большой диагонали ромба через сторону и косинус острого угла ( cosα ) или косинус тупого угла ( cosβ )

d 1 = a √ 2 + 2 · cosα

d 1 = a √ 2 — 2 · cosβ

2. Формулы малой диагонали ромба через сторону и косинус острого угла ( cosα ) или косинус тупого угла ( cosβ )

d 2 = a √ 2 + 2 · cosβ

d 2 = a √ 2 — 2 · cosα

3. Формулы большой диагонали ромба через сторону и половинный угол:

d 1 = 2 a · cos ( α /2)

d 1 = 2 a · sin ( β /2)

4. Формулы малой диагонали ромба через сторону и половинный угол:

d 2 = 2 a · sin ( α /2)

d 2 = 2 a · cos ( β /2)

5. Формулы диагоналей ромба через сторону и другую диагональ:
6. Формулы диагоналей через тангенс острого tgα или тупого tgβ угла и другую диагональ:

7. Формулы диагоналей через площадь и другую диагональ:

8. Формулы диагоналей через синус половинного угла и радиус вписанной окружности:

Периметр ромба

Определение.

Периметром ромба называется сумма длин всех сторон ромба.

Длину стороны ромба можно найти за формулами указанными выше.

Формула определения длины периметра ромба:

Формула периметра ромба через сторону ромба:

Площадь ромба

Определение.

Площадью ромба называется пространство ограниченное сторонами ромба, т.е. в пределах периметра ромба.

Формулы определения площади ромба:

1. Формула площади ромба через сторону и высоту:
2. Формула площади ромба через сторону и синус любого угла:
3. Формула площади ромба через сторону и радиус:

4. Формула площади ромба через две диагонали:

S = 1 d 1 d 2
2

5. Формула площади ромба через синус угла и радиус вписанной окружности:

6. Формулы площади через большую диагональ и тангенс острого угла ( tgα ) или малую диагональ и тангенс тупого угла ( tgβ ):

S = 1 d 1 2 · tg ( α /2)
2
S = 1 d 2 2 · tg ( β /2)
2

Окружность вписанная в ромб

Определение.

Кругом вписанным в ромб называется круг, который примыкает ко всем сторонам ромба и имеет центр на пересечении диагоналей ромба.

Формулы определения радиуса круга вписанного в ромб:

1. Формула радиуса круга вписанного в ромб через высоту ромба:

2. Формула радиуса круга вписанного в ромб через площадь и сторону ромба:

3. Формула радиуса круга вписанного в ромб через площадь и синус угла:

4. Формулы радиуса круга вписанного в ромб через сторону и синус любого угла:

5. Формулы радиуса круга вписанного в ромб через диагональ и синус угла:

6. Формула радиуса круга вписанного в ромб через две диагонали:

7. Формула радиуса круга вписанного в ромб через две диагонали и сторону:

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Присоединяйтесь
© 2011-2024 Довжик Михаил
Копирование материалов запрещено.

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Если Вы хотите связаться со мной, имеете вопросы, предложения или хотите помочь развивать сайт OnlineMSchool пишите мне support@onlinemschool.com

Вычислить диагональ ромба

С помощью онлайн калькулятора вы сможете вычислить диагональ ромба через формулы. Чтобы вычислить диагональ ромба, просто введите ваши данные.

Содержимое

  1. Диагональ ромба через сторону и другую известную диагональ.
  2. Длинная диагональ ромба через сторону и острый угол.
  3. Длинная диагональ ромба через сторону и тупой угол.
  4. Короткая диагональ ромба через сторону и острый угол.
  5. Короткая диагональ ромба через сторону и тупой угол.
  6. Длинная диагональ ромба через короткую диагональ и тупой угол.
  7. Короткая диагональ ромба через длинную диагональ и острый угол.
  8. Диагональ ромба через площадь ромба и другую известную диагональ.

Диагональ ромба

  1. Диагональ ромба – соединяет две вершины противоположных углов ромба.
  2. Одна диагональ ромба длиннее другой диагонали AB > CD.
  3. Диагонали ромба расположены перпендикулярно друг другу.
  4. В точке пересечения диагоналей ромба, диагонали делятся пополам AO = OB , CO = OD.
  5. Диагонали ромба делят углы пополам ∠OAD = ∠OAC , ∠OBC = ∠OBD , ∠OCA = ∠OCB , ∠ODA = ∠ODB.
  6. Одна из диагоналей делит ромб на два одинаковых равнобедренных треугольника.
  7. Две диагонали делят квадрат на четыре одинаковых прямоугольных треугольников.
  8. Точка пересечения диагоналей является центром вписанной окружности.

Диагональ ромба через сторону и другую известную диагональ.

Диагональ ромба через сторону и другую известную диагональ

Формула диагонали ромба через сторону и другую известную диагональ

Где: a — сторона, d — известная диагональ.

Формулы ромба

Ромб — это четырёхугольник, у которого все стороны равны. Ромб можно рассматривать как частный случай параллелограмма, у которого или две смежные стороны равны, или диагонали взаимно перпендикулярны, или диагональ делит угол пополам. Ромб с прямыми углами называется квадратом.

Формулы площади ромба:

Площадь геометрической фигуры — часть поверхности, ограниченная замкнутым контуром данной фигуры. Величина площади ромба выражается числом заключающихся в него квадратных единиц.

1) Площадь ромба равна произведению длины его стороны на высоту (a, h).

2) Площадь ромба равна половине произведения его диагоналей.

S — площадь ромба

a — длина основания ромба

h — длина высоты ромба

d1 — длина 1-ой диагонали

d2 — длина 2-ой диагонали

Формула периметра ромба:

Периметр геометрической фигуры — суммарная длина границ плоской геометрической фигуры. Периметр имеет ту же размерность величин, что и длина.

1) Периметр ромба равен сумме 4-х длин его сторон или произведению длины любой его стороны на четыре (так как у ромба длины всех сторон равны).

P — периметр ромба

a — длина стороны ромба

Остались вопросы?

Здесь вы найдете ответы.

Что понимается под высотой ромба?

Высота ромба представляет собой перпендикуляр, который опущен из одного из его углов на сторону, противоположную данному углу.

Высота ромба, опущенная из одного его угла, делит противолежащую сторону пополам. Как найти величины углов этого ромба?

Обозначим имеющийся ромб как ABCD. Из его угла В проведем высоту ВН, после чего получим треугольник АВН с прямым углом. Известно, что длина всех сторон ромба одинаковая, а длина АН равна половине длины АВ. Зная это и используя теорему, которая является обратной теореме о 30-градусном угле, можно провести доказательство того, что угол АВН равен 30 градусам.

Учитывая то, что сумма всех углов треугольника равна 180 градусом, можно найти неизвестную величину третьего угла треугольника:

Так, угол АВС равен:

Как найти высоту ромба, если единственной величиной, которая известна, является длина одной его стороны?

Известна формула площади (S) ромба, которая представляет собой произведение длины его стороны (а) на высоту (h), проведенную к ней:

Есть возможность выразить высоту из приведенной выше формулы. Она будет равна отношению площади ромба к длине его стороны:

Имеется треугольник с прямым углом и катетами длиной 3 см. и 4 см. Его площадь аналогична площади ромба со стороной 5 см. Как найти высоту ромба?

Площадь (S) треугольника с прямым углом рассчитывается путем деления пополам произведения длин его катетов. В данном случае она будет равна:

SΔ = 4*3/2 = 6 см.кв.

Площадь ромба определяется умножением длины его стороны на высоту, проведенную к ней. Если принять высоту за х, и учесть, что площадь ромба равна площади прямоугольного треугольника (6 см.кв.), то:

Отсюда можно найти значение х:

Ответ: высота ромба составляет 1,2 см.

Как найти высоту ромба при условии, что длины его диагоналей равны 6 см. и 8 см.?

Диагонали, проведенные в ромбе, делят эту фигуру на четыре треугольника, которые являются равными. Длины катетов этих треугольников составляют 3 см. и 4 см. Такой вывод можно сделать на основании того, что в точке пересечения диагоналей они делятся пополам. Гипотенуза (с) треугольников представляет собой сторону ромба. Ее длина равна:

с = √(9+16) = √25 = 5 см.

Следовательно, сторона ромба также равна 5 см.

Площадь ромба высчитывается как произведение длин его диагоналей, деленное пополам:

S = d1*d2/2 = 6*8/2 = 24 см. кв.

Известна также другая формула, используемая для вычисления площади ромба, в которой длина его стороны (а) умножается на высоту(h):

Из данной формулы выражаем высоту:

h = S/a = 24/5 = 4,8 см.

Ответ: Высота ромба составляет 4,8 см.

Как найти высоту ромба при условии, что его диагонали равны d1 и d2, а длина стороны – а?

Высоту ромба можно рассчитать, если его диагонали (d1 и d2)и сторона (а) – известные величинами. В этом случае для определения неизвестной высоты следует пользоваться приведенной ниже формулой:

Площадь ромба составляет 60 см.кв., а его периметр равен 48 см. Как найти высоту ромба в конкретном случае?

Периметр (Р) ромба равен сумме длин всех его сторон (а) и вычисляется по следующей формуле:

В данном случае периметр ромба равен 48 см., это значит, что:

Находим значение а:

Площадь ромба (S) является произведением длины его стороны (а) и высоты (h), проведенной к этой стороне:

В задании сказано, что площадь ромба – 60 см.кв. Значит:

Находим неизвестную высоту:

Ответ: Высота ромба – 5 см.

Как найти высоту ромба, зная о том, что его площадь составляет 48 см.кв., а периметр – 32 см.?

Согласно формуле расчета периметра (Р) ромба, он равен сумме длин всех его сторон (а) (Р=а+а+а+а). Известно, что все стороны ромба имеет одинаковую длину. Из этого следует, что длина одной стороны будет равна ¼ части его периметра:

а = Р/4 = 32/4 = 8 см.

Площадь (S) ромба можно высчитать путем умножения длины его стороны (а) на высоту (h), проведенную к ней:

В конкретном случае:

Отсюда можем найти высоту (h), разделив площадь на длину стороны ромба:

Ответ: Высота ромба составляет 6 см.

Отношение длин диагоналей ромба выглядит как 10/24. Его периметр равен 52 см. Как найти высоту ромба в данном случае?

Периметр (Р) ромба равен сумме длин всех его сторон (а), длины которых равны. Это значит:

По условию задачи:

Предположим, что длина одной из диагоналей ромба равна 10х, тогда длина второй его диагонали будет выглядеть как 24х. Отношение их длин можно записать в следующем виде:

Доказано, что диагонали ромба взаимно перпендикулярны и в точке пересечения они делятся пополам, при этом образуя четыре равных треугольника с прямым углом.

Теорема Пифагора гласит, что сумма длин его катетов, возведенных во вторую степень, равна длине гипотенузы, которая также возведена в квадрат:

Для данной задачи это равенство записывается так:

Отсюда видно, что:

169х²=169; следовательно, х2 = 1. Значит х тоже будет равен 1.

Длина диаметра, обозначенного как 10х, равна 10 см. (10*1), а длина второго диаметра, который обозначен как 24х, равна 24 см. (24*1).

Площадь (S) ромба рассчитывается как:

Из этого можно составить следующее уравнение:

Выражаем h и получаем:

h= d₁*d₂/2*а=10·24:26=240/26=120/13 см.

Какая формула используется с целью вычисления высоты ромба?

Ромб имеет четыре высоты. Все они имеют равные длины. Вывод об этом можно сделать, рассмотрев все треугольные фигуры, элементами которых являются эти высоты. Есть возожность высчитать высоту ромба при помощи различных параметров, которые могут быть указаны в условии конкретной задачи.

Предположим, что нам известна площадь (S) ромба и длина его стороны (а). В этом случае высота ромба будет равна отношению его площади к длине высоты: h = S/a.

Если же по условию задачи известны длины диагоналей ромба d1 и d2, а также его сторона а, то высоту можно рассчитать так: h = (d1*d2 )/a.

В случае, когда известна длина стороны (а) ромба и угол А, находящийся между смежными сторонами, то для расчета высоты ромба используется следующая формула:

h = a*a*sin A /a = a*sin A.

Существуют также и другие варианты вычисления длины высоты ромба на основании того, какие величины будут известны по условию задания. Однако ключевыми параметрами, используя которые можно вычислить высоту ромба, являются диагонали, длина любой его стороны и угол, образованный между смежными сторонами.

В каком виде записываются формулы, используемые для определения площади ромба?

Площадь ромба можно рассчитать одним из трех способов:

1. S = a² sin a, в которой α — образованный двумя сторонами угол, a — сторона.

2. S = ah, или Длина стороны ромба, умноженная на его высоту.

3. S = (d1*d2)/2, в которой d1 и d2 – длины диагоналей фигуры.

На сторону ромба опущена высота, которая на 1,7 см. меньше ее длины. Периметр фигуры составляет 32 см. Как в данном случае вычислить площадь ромба?

Зная, чему равен периметр ромба, можно вычислить длину его стороны:

Известно, что высота данной фигуры меньше ее стороны на 1,7 см. Теперь можем определить длину высоты:

Площадь ромба можно найти, умножив его сторону на высоту, которая на нее опущена:

8 * 6,3 = 50,4 см².кв.

Ответ: S = 50,4 см. кв.

Известно, что диагонали ромба относятся как 4/3, а его сторона составляет 10 см. Как найти площадь ромба?

Если длины диагоналей фигуры относятся как 4/3, то их половины будут относиться также:

(4d)²+(3d)²=10² = 16d²+9d² = 100

Теперь можно найти площадь:

S= 2*d¹/2*d²/2=2*8*6 = 96 см.кв.

Ответ: S ромба = 96 см.кв.

Как записывается формула расчета площади ромба через длины его диагоналей d1 и d2?

Площадь ромба можно описать как сумму площадей 2-х треугольных фигур, основанием которых является одна диагональ, а вторая диагональ ромба представляет собой сумму длин высот этих фигур. Диагонали ромба при пересечении образуют угол в 90 градусов. На основании этого можно найти площадь ромба следующим образом:

Как записать формулу вычисления площади ромба через диагонали?

Известно, что, пересекаясь, диагонали ромба образуют угол в 90 градусов и в точке пересечения делятся пополам.

Для расчета площади ромба через диагонали нужно перемножить их длины, а затем разделить полученное число на два:

Для примера можно рассмотреть ромб, одна диагональ которого равна 5 см., а вторая – 4 см. Тогда его площадь будет равна:

Как выглядит формула для определения площади ромба?

S ромба возможно вычислить, перемножив длину одной из его сторон (а) и высоту (h). Формула записывается так:

Warning: file_put_contents(./students_count.txt): failed to open stream: Permission denied in /var/www/webmath-q2ws/data/www/webmath.ru/poleznoe/guide_content_banner.php on line 20

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 453 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Остались вопросы?

Здесь вы найдете ответы.

Как найти диагональ ромба, онлайн-калькулятор

vkontakte

Диагональ параллелограмма – это отрезок, соединяющий противоположные вершины фигуры. В зависимости от вида геометрической фигуры диагональ обладает важными свойствами, на которые основываются базовые правила и формулы. Рассмотрим подробнее, как найти длину данного отрезка, построенного в параллелограмме с равными сторонами, т.е. ромбе.

Калькуляторы

  • Диагональ ромба через сторону и другую известную диагональ
  • Длинная диагональ ромба через сторону и острый угол
  • Длинная диагональ ромба через сторону и тупой угол
  • Короткая диагональ ромба через сторону и острый угол
  • Короткая диагональ ромба через сторону и тупой угол
  • Длинная диагональ ромба через короткую диагональ и тупой угол
  • Короткая диагональ ромба через длинную диагональ и острый угол
  • Диагональ ромба через площадь ромба и другую известную диагональ

Диагональ ромба через сторону и другую известную диагональ

Рис 1

В случае, если в ромбе известны значения одной диагонали (d) и стороны (a) фигуры, прийти к определению длины второго отрезка будет несложно, благодаря тождеству параллелограмма, которое гласит, что сумма квадратов диагоналей равна квадрату стороны, умноженному на 4:

где a — сторона, d — известная диагональ.

Сторона ( a ):
Диагональ ( d ):
Цифр после запятой:
Результат в:
Сторона ( a ): мм
Диагональ ( d ): мм
Диагональ ( D ) = мм

Пример. Дан ромб с диагональю равной 6 мм и стороной, длина которой 5 мм. Нужно найти вторую диагональ ромба. d = √(4 * 5² — 6²) = √(4 * 25 — 36) = √(100 — 36) = √64 = 8 мм – длина неизвестной диагонали.

Как найти длину большей диагонали через сторону и острый угол

Рис 1

Найти величину длинной диагонали можно по формуле:

d = a * √(2 + 2 * cos α)

где a — сторона, cos α — острый угол.

Сторона ( a ):
Цифр после запятой:
Результат в:
Сторона ( a ): мм
Угол ( α ): градус
Диагональ ( D ) = мм

Проведенный отрезок, который соединяет противоположные вершины фигуры, делит ее на равнобедренные треугольники. По свойствам равнобедренного треугольника косинус углов при основании равен половине основания (в данном случае диагонали), деленного на боковую сторону (сторону ромба).

Пример. Острый угол между сторонами ромба длиной 6 см равен 45 градусам. Найти биссектрису острого угла ромба (в данном случае диагональ). d = 6 * √(2 + 2 * cos 45°) = 6 * √(2 + 2 * √2 / 2) = 6 * √(2 + 2 * 0,7) = 11см – длинна неизвестного отрезка.

Как найти длину большей диагонали через сторону и известное значение тупого угла

Рис 1

Как уже известно, построенная диагональ в ромбе, делит его на 2 равнобедренных треугольника. Если дополнить картину второй проведенной диагональю, получится прямоугольный треугольник. Косинус половинки тупого угла (c) это отношение прилежащего катета к гипотенузе (стороне ромба a). На основании всех этих свойств можно прийти к простой формуле нахождения нужной диагонали через сторону ромба (в данном случае гипотенузу) и косинус тупого угла:

d = a * √( 2 — 2 * cos β)

где a — сторона, cos β — тупой угол

Сторона ( a ):
Цифр после запятой:
Результат в:
Сторона ( a ): мм
Угол ( β ): градус
Диагональ ( D ) = мм

Пример. Дан ромб со стороной 4,65 м, величина тупого угла которого равна 120 градусам. Необходимо найти противолежащую известному углу диагональ. d = 4,65 * √(2 — 2 * cos 120°) = 4,65 * √(2 — 2 * (-0,5) = 8 м – длина неизвестного отрезка.

Как вычислить длину меньшей диагонали через сторону и острый угол

Рис 1

Так как ситуация аналогична предыдущей (только известный противолежащий угол острый), формула нахождения короткой диагонали практически ничем не отличается от алгоритма определения длинного отрезка, соединяющего противолежащие вершины ромба.

d = a * √(2 — 2 * cos α)

где a — сторона, cos α — острый угол

Сторона ( a ):
Цифр после запятой:
Результат в:
Сторона ( a ): мм
Угол ( α ): градус
Диагональ ( d ) = мм

Пример. В ромбе со стороной 4,65 м проведена диагональ, которая является основанием равнобедренного треугольника с углом при вершине равным 52 градусам. Найти основание треугольника (меньшую диагональ). d = 4,65 * √(2 — 2 * cos 52°) = 4 м.

Короткая диагональ ромба через длинную диагональ и острый угол

Рис 1

Аналогично с предыдущей ситуацией, через тангенс острого угла находим величину неизвестного катета (половинку искомой диагонали). Упрощенная формула:

d = D * tg (α / 2)

где D — длинная диагональ, α — острый угол

Длин.диагональ ( D ):
Цифр после запятой:
Результат в:
Длин.диагональ ( D ): мм
Угол ( α ): градус
Диагональ ( d ) = мм

Пример. Острый угол ромба, в котором построена диагональ длиной 11 мм, равен 58 градусам. Найти длину второй диагонали. d = 11 * tg 29° = 6 мм – длина меньшей диагонали ромба.

Короткая диагональ через сторону и тупой угол

Рис 1

Формула для нахождения меньшей диагонали ромба при помощи значения стороны и тупого угла такова:

d = a * √(2 + 2 * cos β)

где a — сторона, cos β — тупой угол

Сторона ( a ):
Цифр после запятой:
Результат в:
Сторона ( a ): мм
Угол ( β ): градус
Диагональ ( d ) = мм

Пример. Дан ромб со стороной 4,65 мм, один из углов которого равен 128 градусов, а меньшая диагональ фигуры – искомая величина. d = a * √(2 + 2 * cos β) = 4,65 * √(2 + 2 * cos 128°) = 4 мм.

Длинная диагональ ромба через короткую диагональ и тупой угол

Рис 1

Длина большей диагонали ромба легко находится по формуле:

D = d * tg (β / 2)

где d — короткая диагональ, β — тупой угол

Кор.диагональ ( d ):
Цифр после запятой:
Результат в:
Кор.диагональ ( d ): мм
Угол ( β ): градус
Диагональ ( D ) = мм

Благодаря теореме Пифагора, зная длину короткой диагонали (половина катета прямоугольного треугольника) и значение тупого угла ромба (половина которого является углом прямоугольного треугольника), не составит труда определить значение большей диагонали ромба через тангенс тупого угла.

Пример. Дан ромб с диагональю 6,5 см, которая является биссектрисой тупого угла величиной 119 градусов. Нужно найти неизвестную диагональ ромба. D = 6,5 * tg (119 / 2) = 11 см – искомая величина.

Диагональ ромба через площадь и другую известную диагональ

Рис 1

Найти любую из двух диагоналей ромба можно по формуле:

D = 2 * S / d

где d – длина известного отрезка, а S-площадь фигуры.

Диагональ ( d ):
Площадь ( S ):
Цифр после запятой:
Результат в:
Диагональ ( d ): мм
Площадь ( S ): мм²
Диагональ ( D ) = мм

Пример. Дан ромб с площадью равной 64 см², его диагональ равна 8,5 см. Необходимо найти длину второго отрезка, соединяющего противолежащие вершины. D = 2 * S / d = 2 * 64 / 8,5 = 15 см .

Ромб относится к плоским выпуклым геометрическим фигурам. Данный вид параллелограмма отличается равными сторонами, а также тем, что его диагонали при пересечении перпендикулярны друг другу. Существуют и другие свойства ромба, которые подробно раскрывают смысл указанных выше формул:

  • Диагонали, пересекаясь под прямым углом, делятся точкой пересечения пополам. Таким образом, они всегда разделяют фигуру на 4 прямоугольных треугольника.
  • Противоположные стороны ромба попарно параллельны.
  • Противолежащие углы равны, а смежные – в сумме образуют 180 градусов.
  • Диагонали служат биссектрисами всех углов ромба.
  • Сумма квадратов диагоналей равна квадрату стороны, умноженному на 4.
  • Если соединить середины сторон ромба, получится прямоугольник.
  • Точка пересечения диагоналей — центр вписанной окружности.

Определение диагонали ромба часто встречается в задачах школьной программы. Найдя данное значение, можно прийти к искомому результату задания. Через диагональ можно найти стороны ромба, площадь, периметр и все внутренние углы ромба.

Геометрия в школьной программе включается в себя немалое количество формул, основанных на теоремах и правилах. Некоторые из которых помогают значительно сократить время для решения задач на контрольной или при выполнении домашней работы. Данная статья поможет быстро прийти к логическому решению задания и правильному результату. Знание и применение выше перечисленных формул способствуют умению решать задачи по геометрии любой сложности.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *