Пнп и нпн транзисторы в чем разница
Перейти к содержимому

Пнп и нпн транзисторы в чем разница

  • автор:

Транзисторы: ​принцип работы, схема включения, чем отличаются ​биполярные и полевые

Транзистор — повсеместный и важный компонент в современной микроэлектронике. Его назначение простое: он позволяет с помощью слабого сигнала управлять гораздо более сильным.

В частноти, его можно использовать как управляемую «заслонку»: отсутствием сигнала на «воротах» блокировать течение тока, подачей — разрешать. Иными словами: это кнопка, которая нажимается не пальцем, а подачей напряжения. В цифровой электронике такое применение наиболее распространено.

Транзисторы выпускаются в различных корпусах: один и тот же транзистор может внешне выглядеть совершенно по разному. В прототипировании чаще остальных встречаются корпусы:

TO-92 — компактный, для небольших нагрузок
TO-220AB — массивный, хорошо рассеивающий тепло, для больших нагрузок

Обозначение на схемах также варьируется в зависимости от типа транзистора и стандарта обозначений, который использовался при составлении. Но вне зависимости от вариации, его символ остаётся узнаваемым.

Биполярные транзисторы

Биполярные транзисторы (BJT, Bipolar Junction Transistors) имеют три контакта:

Коллектор (collector) — на него подаётся высокое напряжение, которым хочется управлять

База (base) — через неё подаётся небольшой ток, чтобы разблокировать большой; база заземляется, чтобы заблокировать его

Эмиттер (emitter) — через него проходит ток с коллектора и базы, когда транзистор «открыт»

Основной характеристикой биполярного транзистора является показатель hfe также известный, как gain. Он отражает во сколько раз больший ток по участку коллектор–эмиттер способен пропустить транзистор по отношению к току база–эмиттер.

Например, если hfe = 100, и через базу проходит 0.1 мА, то транзистор пропустит через себя как максимум 10 мА. Если в этом случае на участке с большим током находится компонент, который потребляет, например 8 мА, ему будет предоставлено 8 мА, а у транзистора останется «запас». Если же имеется компонент, который потребляет 20 мА, ему будут предоставлены только максимальные 10 мА.

Также в документации к каждому транзистору указаны максимально допустимые напряжения и токи на контактах. Превышение этих величин ведёт к избыточному нагреву и сокращению службы, а сильное превышение может привести к разрушению.

NPN и PNP

Описанный выше транзистор — это так называемый NPN-транзистор. Называется он так из-за того, что состоит из трёх слоёв кремния, соединённых в порядке: Negative-Positive-Negative. Где negative — это сплав кремния, обладающий избытком отрицательных переносчиков заряда (n-doped), а positive — с избытком положительных (p-doped).

NPN более эффективны и распространены в промышленности.

PNP-транзисторы при обозначении отличаются направлением стрелки. Стрелка всегда указывает от P к N. PNP-транзисторы отличаются «перевёрнутым» поведением: ток не блокируется, когда база заземлена и блокируется, когда через неё идёт ток.

Полевые транзисторы

Полевые транзисторы (FET, Field Effect Transistor) имеют то же назначение, но отличаются внутренним устройством. Частным видом этих компонентов являются транзисторы MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor). Они позволяют оперировать гораздо большими мощностями при тех же размерах. А управление самой «заслонкой» осуществляется исключительно при помощи напряжения: ток через затвор, в отличие от биполярных транзисторов, не идёт.

Полевые транзисторы обладают тремя контактами:

Сток (drain) — на него подаётся высокое напряжение, которым хочется управлять

Затвор (gate) — на него подаётся напряжение, чтобы разрешить течение тока; затвор заземляется, чтобы заблокировать ток.

Исток (source) — через него проходит ток со стока, когда транзистор «открыт»

N-Channel и P-Channel

По аналогии с биполярными транзисторами, полевые различаются полярностью. Выше был описан N-Channel транзистор. Они наиболее распространены.

P-Channel при обозначении отличается направлением стрелки и, опять же, обладает «перевёрнутым» поведением.

Подключение транзисторов для управления мощными компонентами

Типичной задачей микроконтроллера является включение и выключение определённого компонента схемы. Сам микроконтроллер обычно имеет скромные характеристики в отношении выдерживаемой мощности. Так Ардуино, при выдаваемых на контакт 5 В выдерживает ток в 40 мА. Мощные моторы или сверхъяркие светодиоды могут потреблять сотни миллиампер. При подключении таких нагрузок напрямую чип может быстро выйти из строя. Кроме того для работоспособности некоторых компонентов требуется напряжение большее, чем 5 В, а Ардуино с выходного контакта (digital output pin) больше 5 В не может выдать впринципе.

Зато, его с лёгкостью хватит для управления транзистором, который в свою очередь будет управлять большим током. Допустим, нам нужно подключить длинную светодиодную ленту, которая требует 12 В и при этом потребляет 100 мА:

Теперь при установке выхода в логическую единицу (high), поступающие на базу 5 В откроют транзистор и через ленту потечёт ток — она будет светиться. При установке выхода в логический ноль (low), база будет заземлена через микроконтроллер, а течение тока заблокированно.

Обратите внимание на токоограничивающий резистор R. Он необходим, чтобы при подаче управляющего напряжения не образовалось короткое замыкание по маршруту микроконтроллер — транзистор — земля. Главное — не превысить допустимый ток через контакт Ардуино в 40 мА, поэтому нужно использовать резистор номиналом не менее:

$ R = \frac<U - U_d></p>
<p> = \frac <5\unit- 0.3\unit><0.04\unit<А>> \approx 118\unit $» /></p><div class='code-block code-block-8' style='margin: 8px 0; clear: both;'>
<!-- 8theinternet -->
<script src=

здесь Ud — это падение напряжения на самом транзисторе. Оно зависит от материала из которого он изготовлен и обычно составляет 0.3 – 0.6 В.

Но совершенно не обязательно держать ток на пределе допустимого. Необходимо лишь, чтобы показатель gain транзистора позволил управлять необходимым током. В нашем случае — это 100 мА. Допустим для используемого транзистора hfe = 100, тогда нам будет достаточно управляющего тока в 1 мА

$ R = \frac<U - U_d></p>
<p> = \frac <5\unit- 0.3\unit><0.001\unit<А>> = 4700\unit = 4.7\unit $» /></p><div class='code-block code-block-9' style='margin: 8px 0; clear: both;'>
<!-- 9theinternet -->
<script src=

Нам подойдёт резистор номиналом от 118 Ом до 4.7 кОм. Для устойчивой работы с одной стороны и небольшой нагрузки на чип с другой, 2.2 кОм — хороший выбор.

Если вместо биполярного транзистора использовать полевой, можно обойтись без резистора:

это связано с тем, что затвор в таких транзисторах управляется исключительно напряжением: ток на участке микроконтроллер — затвор — исток отсутствует. А благодаря своим высоким характеристикам схема с использованием MOSFET позволяет управлять очень мощными компонентами.

Если не указано иное, содержимое этой вики предоставляется на условиях следующей лицензии: CC Attribution-Noncommercial-Share Alike 4.0 International

Производные работы должны содержать ссылку на http://wiki.amperka.ru, как на первоисточник, непосредственно перед содержимым работы.
Вики работает на суперском движке DokuWiki.

схемотехника/транзисторы.txt · Последние изменения: 2022/06/07 10:11 — mik

Инструменты страницы

  • Показать исходный текст
  • История страницы
  • Ссылки сюда
  • Наверх

Разница npn и pnp только в направлении тока(э-к и наоборот)?

Добрый день, подскажите, разница pnp и npn транзисторов только в том, что
у npn транзистора ток течет от коллектора на эмиттер, а
у pnp наоборот, от эмиттера к коллектору?
(не считаю открытия базы плюсовой или минусовой направляностью к ней)
92889633d57a4107a7fa3fa5eba34571.JPG 0813c651f234483f867b558e694be879.JPG

  • Вопрос задан более трёх лет назад
  • 19685 просмотров

1 комментарий

Оценить 1 комментарий

Borizzz @Borizzz Автор вопроса
Решения вопроса 2

NeiroNx

Программист
да — только в этом.
Ответ написан более трёх лет назад
Нравится 3 5 комментариев

Так-то «идентичные» pnp и npn еще немного отличаются и по каким-то характеристикам, но в среднем на это не обращают внимания.

NeiroNx

для этого придумали комплементарные пары — у них характеристики максимально близкие
Borizzz @Borizzz Автор вопроса

pfg21: подскажите ещё, пожалуйста
а транзисторы, которые стоять в процессорах, они точно такие же, только маленькие?
и где так принципиально важно использование pnp или npn транзисторов, а где других, если разница только в месте входа-выхода тока?

NeiroNx

в процессорах КМОП технология, так как переходные процессы в них быстрее. Для транзисторов есть схемы включения, каждая схема включения обладает своими параметрами и в зависимости от них применяется в том или ином случае. Поищите литературу по устройтву и типам полупроводниковых элементов и основам схемотехники.

В современных схемах в большинстве своем используют МОП-транзисторы (в простонародье полевые :). у них тоже есть два вида: N- и P-канальные, с симетричными характеристиками.
У них чуть более лучшие характеристики, плюс можно «сдвинуть» характеристику элемента в сторону, т.е они более разнообразные.
Не понял вопроса, но принципе да — отличия pnp и npn только в направлениях проходящих токов и смысл выводов и функциональные параметры останутся теми же самым. приведенный рисунок это качество и описывает.

roach1967

В принципе разница только в направлении тока, но есть нюансы. Например в NPN-транзисторе носителем тока являются электроны, а в PNP-транзисторе — дырки (вакансии), которые менее мобильны. Так-что в общем случае NPN-транзисторы более высокочастотны.
Немножко о транзисторах.

Ответ написан более трёх лет назад
Нравится 2 3 комментария
Borizzz @Borizzz Автор вопроса

а для чего тогда pnp транзисторы применяют?
в мк получается все npn транзисторы, только сила тока на них подается разная?

roach1967

Как наиболее распространённый пример применения PNP и NPN транзисторов — комплементарная пара в различных усилителях сигналов.
В МК (да и в любой современной цифровой схемотехнике) уже давно не применяют биполярные транзисторы: их заменили на полевые (CMOS). Немаловажную роль в этом играет то, что на биполярном транзисторе, в открытом состоянии, всегда есть падение напряжения (~0,7в. для кремниевых и ~0,4в. для германиевых). В то-же самое время у полевых транзисторов очень маленькое сопротивление открытого канал — может достигать единиц милиома и даже меньше. И для поддержания открытого состояния практически не тратиться энергия. Т.е. практически идеальный переключатель. Но есть и минус полевых транзисторов — их вход представляет собой конденсатор.
Для увеличения мощности выходов МК используют мощные полевые транзисторы. Но не напрямую, а через специальную схему — драйвер, выходной каскад которого как раз и представляет собой каскад биполярных комплементарных транзисторов для успешного перезаряда входной ёмкости КМОП-транзистора.
Биполярные транзисторы успешно применяются в аналоговой технике, особенно в СВЧ. Хотя с развитием технологий и здесь успешно заменяются на полевые.
Единственное направление, имхо, где лидируют биполярные транзисторы — высоковольтные приборы.
Здесь вроде-как разжевано.

SamPawno

В чем разница между NPN и PNP транзисторами?

1 сообщение • Страница 1 из 1

Arduino Автор темы, Сержант Arduino Автор темы, Сержант Сообщения: 64 Зарегистрирован: 19 апреля 2017 С нами: 7 лет

#1 Arduino » 18 июня 2020, 22:46

Существует два основных типа транзисторов – биполярные и полевые. Биполярные транзисторы изготавливаются из легированных материалов и могут быть двух типов – NPN и PNP . Транзистор имеет три вывода, известные как эмиттер ( Э ), база ( Б ) и коллектор ( К ). На рисунке, приведенном ниже, изображен NPN транзистор где, при основных режимах работы (активном, насыщении, отсечки) коллектор имеет положительный потенциал, эмиттер отрицательный, а база используется для управления состоянием транзистора.
Изображение
Физика полупроводников в этой статье обсуждаться не будет, однако, стоит упомянуть, что биполярный транзистор состоит из трех отдельных частей, разделенных двумя p-n переходами. Транзистор PNP имеет одну N область, разделенную двумя P областями:
Изображение
Транзистор NPN имеет одну P область, заключенную между двумя N областями:
Изображение
Сочленения между N и P областями аналогичны переходам в диодах, и они также могут быть с прямым и обратным смещением p-n перехода. Данные устройства могут работать в разных режимах в зависимости от типа смещения:

    Отсечка : работа в этом режиме тоже происходит при переключении. Между эмиттером и коллектором ток не протекает, практически «обрыв цепи», то есть «контакт разомкнут».
    Активный режим : транзистор работает в схемах усилителей. В данном режиме его характеристика практически линейна. Между эмиттером и коллектором протекает ток, величина которого зависит от значения напряжения смещения (управления) между эмиттером и базой.
    Насыщение : работает при переключении. Между эмиттером и коллектором происходит практически «короткое замыкание» , то есть «контакт замкнут».
    Инверсный активный режим: как и в активном, ток транзистора пропорционален базовому току, но течет в обратном направлении. Используется очень редко.

В транзисторе NPN положительное напряжение подается на коллектор для создания тока от коллектора к эмиттеру. В PNP транзисторе положительное напряжение подается на эмиттер для создания тока от эмиттера к коллектору. В NPN ток течет от коллектора ( К ) к эмиттеру ( Э ):
Изображение
А в PNP ток протекает от эмиттера к коллектору:
Изображение
Ясно, что направления тока и полярности напряжения в PNP и NPN всегда противоположны друг другу. Транзисторы NPN требуют питания с положительной полярностью относительно общих клемм, а PNP транзисторы требуют отрицательного питания.

Изображение

PNP и NPN работают почти одинаково, но их режимы отличаются из-за полярностей. Например, чтобы перевести NPN в режим насыщения, UБ должно быть выше, чем UК и UЭ . Ниже приводится краткое описание режимов работы в зависимости от их напряжения:

Основным принципом работы любого биполярного транзистора является управление током базы для регулирования протекающего тока между эмиттером и коллектором. Принцип работы NPN и PNP транзисторов один и тот же. Единственное различие заключается в полярности напряжений, подаваемых на их N-P-N и P-N-P переходы, то есть на эмиттер-базу-коллектор.

Как отличить полевой и биполярный транзистор и какой из них лучше

Как отличить полевой и биполярный транзистор и какой из них лучше

Прочитайте о том, какие отличия между полевыми и биполярными транзисторами, а также изучите достоинства и недостатки каждой конструкции в нашей статье.

  • имеющие p-n переход для управления;
  • с наличием диэлектрика, изолирующего затвор.

Первая конструкция отличается тем, что затвор полевого транзистора отделяется от канала специальным переходом (типа p-n). При этом переход смещается в противоположном направлении. Второй тип характеризуется тем, что затвор изолируется от канала при помощи диэлектрика. Изолирующий материал укладывается тонким слоем. Управление полевым транзистором происходит с помощью электрического поля затвора. Отсюда и название этой категории устройств. Ко второй разновидности относят полевой транзистор типа MOSFET, в котором затвор изолируется при помощи кремниевого оксида.

Разновидности биполярных приемников

Такие детали чаще всего имеют трёхэлектродную конструкцию. В биполярном транзисторе два электрода (коллектор и эмиттер) управляются третьим электродом – базой. Ток, подающийся на базу, имеет малые значения. Но именно этот ток определяет изменение тока коллектора. Поэтому биполярный транзистор управляется током базы. В зависимости от проводимости, структура этого устройства может быть двух типов:

Главное отличие полевого или униполярного транзистора от биполярного состоит в том, что первый управляется напряжением, а второй – током базы.

Основные отличия

Исходя из описанных параметров, можно определить, чем полевой транзистор типа MOSFET лучше биполярного и в чем проявляются его преимущества. Сравнительно небольшие затраты электрической энергии при работе с токами высоких частот. Незначительность помех при работе. Температурная стабильность. Полевые действуют быстрее биполярных транзисторов, поскольку в них не накапливаются неосновные заряды. Возможность более высокого усиления.

Другое отличие – влияние температуры. При нагревании биполярных n-p-n или p-n-p транзисторов значения тока коллектора и эмиттера возрастают. Обратный процесс происходит при увеличении температуры полевых устройств. Это еще одно преимущество приемников полевого типа.

Биполярный IGBT транзистор

Конструкция биполярного IGBT транзистора сочетает в себе особенности обеих разновидностей. В нем объединены главные качества. По сути, такой приемник представляет собой биполярный транзистор, имеющий затвор с изоляцией диэлектриком. У данной конструкции есть свои достоинства. Итак, чем биполярный транзистор типа IGBT лучше полевого и в чём проявляются главные качества.

Меньшие потери на нагревание. При нагревании приемников MOSFET их сопротивление увеличивается. Такая особенность приводит к увеличению тепловых затрат. У моделей IGBT сопротивление с ростом температуры уменьшается. Отсутствие токовых перегрузок. Это возможно за счет меньшего времени восстановления внутренних диодов IGBT моделей.

Приемники полевого типа распространяются все больше и вытесняют биполярные устройства. Эти приборы обладают высокой долговечностью, а также они могут стабильно работать от небольшого источника питания.

Конструкция IGBT позволяет сочетать в себе все лучшие качества приемников. Однако при этом невозможно избежать негативного влияния недостатков той и другой разновидностей. Приемники типа IGBT применяются все чаще, но использовать их возможно не во всех приборах.

Вы можете купить качественные приемники биполярного и полевого типа в интернет-магазине «КИМ». В наличии имеется множество электротоваров, микросхем, запчастей для бытовой техники, датчиков. Кроме того, в ассортименте есть такие электронные компоненты, которые трудно найти в похожих магазинах. Наши сотрудники помогут выбрать нужное устройство с учетом ваших требований. Они расскажут обо всех основных преимуществах и недостатках товара. Мы осуществляем доставку заказов по России.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *