Косинус это проекция на какую ось
Перейти к содержимому

Косинус это проекция на какую ось

  • автор:

Проекция силы на ось и на плоскость

Проекция силы на ось – это алгебраическая величина, равная произведению модуля силы на косинус угла между положительным направлением оси и вектором силы (т.е. это отрезок, откладываемый силой на соответствующие оси. Рисунок 1.13):

Проекция силы на ось

Формулы для расчета проекций сил на оси

Проекцию силы на ось можно представить себе как тень, отбрасываемую вектором силы на соответствующую ось от бесконечно далекого источника света.

Как определяются знаки проекций сил на оси показано в нашем видео:

В случае пространственных (трехмерных) систем для нахождения проекции силы на ось сначала бывает удобнее найти ее проекцию на плоскость, которую потом надо спроецировать на ось (рисунок 1.14):

Что использовать sin или cos при проецировании на оси X и Y?

Author24 — интернет-сервис помощи студентам

При решении задачи про тела находящиеся под действием нескольких сил (таких так брусок по наклонной плоскости) возникает вопрос:что использовать sin или cos при проецировании на оси X и Y
что где нужно использовать подскажите пожалуйста. тоисть где sin а где cos.

94731 / 64177 / 26122
Регистрация: 12.04.2006
Сообщений: 116,782
Ответы с готовыми решениями:

Показать, что выражения x=sin(a) и y=cos(a) описывают окружность при изменении а от 0 до 6.28 радиан.
Показать, что выражения x=sin(a) и y=cos(a) описывают окружность при изменении а от 0 до 6.28.

Построить массив по правилу: X[i]=(cos 1 +. + cos i) / (sin 1 +. + sin i)
Помогите, построить одномерный вещественный массив X из n элементов (n — константа).Я знаю, что.

Regex для проверки содержания в строке sin или же cos, или же tg
строка например sin или же cos, или же tg Нужно условие: Если строка содержит ("это") или ("это").

2356 / 1463 / 125
Регистрация: 20.12.2011
Сообщений: 2,223

С помощью тригонометрических функций находят одну и сторон прямоугольного треугольника, учитывая определение sin или cos. А с точки зрения векторной алгебры — проекция вектора на ось называется разность проекций конца вектора и его начала.
http://webmath.exponenta.ru/s/pyartli1/node7.htm

Изображения
Регистрация: 07.04.2012
Сообщений: 299

теория теорией но вот на практике я вижу по другому вот что пишут при проецировании.

вон видите чёрным подчёркнуто что при проецировании на ось x используют синус а при проецировании на ось y используют косинус.в чём проблема.

почему проекция на ось Х равна sin а не cos

во всех учебниках указано, что при движении по наклонной плоскости (ось Х) проекция силы тяжести на ось Х равна F*sin L, но ведь sin это отношение к оси Y. Заранее спасибо!

Лучший ответ

А что неверно

Остальные ответы

Если вообще, то потому что это разные оси X и Y, в разных случаях. Также, как если в одном уравнении x равняется какому-то значению, то это не значит, что в написанном рядом другом уравнении тоже x будет таким же.
Косинус — это проекция не именно на ось X, а на прилежащую ось. Какой буквой её ни назови. И не именно на горизонтальную ось, а на прилежащую, независимо от её расположения от чего-либо другого.

Сила тяжести всегда направлена вертикально, поэтому её проекция на ось Х (на горизонтальную ось! ) есть точка. А F*sin(а) — это горизонтальная составляющая действующей на тело силы F

Косинус это проекция на какую ось

Задачи по динамике.

I и II закон Ньютона.

Ввод и направление осей.

Проецирование сил на оси.

Решение систем уравнений.

Самые типовые задачи по динамике

Начнем с I и II законов Ньютона.

Откроем учебник физики и прочтем. I закон Ньютона: существуют такие инерциальные системы отсчета в которых. Закроем такой учебник, я тоже не понимаю. Ладно шучу, понимаю, но объясню проще.

I закон Ньютона: если тело стоит на месте либо движется равномерно (без ускорения), сумма действующих на него сил равна нулю.

Вывод: Если тело движется с постоянной скоростью или стоит на месте векторная сумма сил будет ноль.

II закон Ньютона: если тело движется равноускоренно или равнозамедленно (с ускорением), сумма сил, действующих на него, равна произведению массы на ускорение.

Вывод: Если тело двигается с изменяющейся скоростью, то векторная сумма сил, которые как-то влияют на это тело ( сила тяги, сила трения, сила сопротивления воздуха), равна массе этого тело умножить на ускорение.

При этом одно и то же тело чаще всего движется по-разному (равномерно или с ускорением) в разных осях. Рассмотрим именно такой пример.

Задача 1. Определите коэффициент трения шин автомобиля массой 600 кг, если сила тяги двигателя 4500 Н вызывает ускорение 5 м/с².

Обязательно в таких задачах делать рисунок, и показывать силы, которые дествуют на машину:

На Ось Х: движение с ускорением

На Ось Y: нет движения (здесь координата, как была ноль так и останется, машина не поднимает в горы или спускается вниз)

Те силы, направление которых совпадает с направлением осей, будут с плюсом, в противоположном случае — с минусом.

По оси X: сила тяги направлена вправо, так же как и ось X, ускорение так же направлено вправо.

Fтр = μN, где N — сила реакции опоры. На оси Y: N = mg, тогда в данной задаче Fтр = μmg.

Коэффициент трения — безразмерная величина. Следовательно, единиц измерения нет.

Задача 2. Груз массой 5кг, привязанный к невесомой нерастяжимой нити, поднимают вверх с ускорением 3м/с². Определите силу натяжения нити.

Сделаем рисунок, покажем силы, которые дествуют на груз

T — сила натяжения нити

На ось X: нет сил

Разберемся с направлением сил на ось Y:

Выразим T (силу натяжения) и подставим числительные значения:

Самое главное не запутаться с направлением сил (по оси или против), все остальное сделает калькулятор или всеми любимый столбик.

Далеко не всегда все силы, действующие на тело, направлены вдоль осей.

Простой пример: мальчик тянет санки

Если мы так же построим оси X и Y, то сила натяжения (тяги) не будет лежать ни на одной из осей.

Чтобы спроецировать силу тяги на оси, вспомним прямоугольный треугольник.

Отношение противолежащего катета к гипотенузе — это синус.

Отношение прилежащего катета к гипотенузе — это косинус.

Сила тяги на ось Y — отрезок (вектор) BC.

Сила тяги на ось X — отрезок (вектор) AC.

Если это непонятно, посмотрите задачу №4.

Чем длинее будет верека и, соответсвенно, меньше угол α, тем проще будет тянуть санки. Идеальный вариант, когда веревка параллельна земле , ведь сила, которая действуют на ось X— это Fнcosα. При каком угле косинус максимален? Чем больше будет этот катет, тем сильнее горизонтальная сила.

Задача 3. Брусок подвешен на двух нитях. Сила натяжения первой составляет 34 Н, второй — 21Н, θ1 = 45°, θ2 = 60°. Найдите массу бруска.

Введем оси и спроецируем силы:

Получаем два прямоугольных треугольника. Гипотенузы AB и KL — силы натяжения. LM и BC — проекции на ось X, AC и KM — на ось Y.

Задача 4. Брусок массой 5 кг (масса в этой задаче не нужна, но, чтобы в уравнениях все было известно, возьмем конкретное значение) соскальзывает с плоскости, которая наклонена под углом 45°, с коэффициентом трения μ = 0,1. Найдите ускорение движения бруска?

Когда же есть наклонная плоскость, оси (X и Y) лучше всего направить по направлению движения тела. Некоторые силы в данном случае ( здесь это mg) не будут лежать ни на одной из осей. Эту силу нужно спроецировать, чтобы она имела такое же направление, как и взятые оси.
Всегда ΔABC подобен ΔKOM в таких задачах (по прямому углу и углу наклона плоскости).

Рассмотрим поподробнее ΔKOM:

Получим, что KO лежит на оси Y, и проекция mg на ось Y будет с косинусом. А вектор MK коллинеарен (параллелен) оси X, проекция mg на ось X будет с синусом, и вектор МК направлен против оси X (то есть будет с минусом).

Не забываем, что, если направления оси и силы не совпадают, ее нужно взять с минусом!

Из оси Y выражаем N и подставляем в уравнение оси X, находим ускорение:

Как видно, массу в числителе можно вынести за скобки и сократить со знаменаталем. Тогда знать ее не обязательно, получить ответ реально и без нее.
Да-да, в идеальных условиях (когда нет силы сопротивления воздуха и т.п.), что перо, что гиря скатятся (упадут) за одно и тоже время.

Задача 5. Автобус съезжает с горки под уклоном 60° с ускорением 8 м/с² и с силой тяги 8 кН. Коэффициент трения шин об асфальт равен 0,4. Найдите массу автобуса.

Сделаем рисунок с силами:

Введем оси X и Y. Спроецируем mg на оси:

Запишем второй закон Ньютона на X и Y:

Задача 6. Поезд движется по закруглению радиуса 800 м со скоростью 72 км/ч. Определить, на сколько внешний рельс должен быть выше внутреннего. Расстояние между рельсами 1,5 м.

Самое сложное — понять, какие силы куда действуют, и как угол влияет на них.

Вспомни, когда едешь по кругу на машине или в автобусе, куда тебя выталкивает? Для этого и нужен наклон, чтобы поезд не упал набок!

Угол α задает отношение разницы высоты рельсов к расстоянию между ними (если бы рельсы находились горизонтально)

Запишем какие силы действуют на оси:

Ускорение в данной задачи центростремительное!

Поделим одно уравнение на другое:

Тангенс — это отношение противолежащего катета к прилежащему:

Как мы выяснили, решение подобных задач сводится к расстановке направлений сил, проецированию их на оси и к решению систем уравнений, почти сущий пустяк.

В качестве закрепления материала решите несколько похожих задач с подсказками и ответами.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *