Как написать искусственный интеллект
Перейти к содержимому

Как написать искусственный интеллект

  • автор:

Как создать искусственный интеллект? (Почти) исчерпывающее руководство

Обложка поста Как создать искусственный интеллект? (Почти) исчерпывающее руководство

На этой неделе вы могли прочитать крайне мотивирующей кейс от ученика GeekBrains Валерия Турова, который изучил профессию «Программист Java», где он рассказал об одной из своих целей, которая привела в профессию — желанию познать принцип работы и научиться создавать самому игровых ботов.

А ведь действительно, именно желание создать совершенный искусственный интеллект, будь то игровая модель или мобильная программа, сподвигла на путь программиста многих из нас. Проблема в том, что за тоннами учебного материала и суровой действительностью заказчиков, это самое желание было заменено простым стремлением к саморазвитию. Для тех, кто так и не приступил к исполнению детской мечты, далее краткий путеводитель по созданию настоящего искусственного разума.

Стадия 1. Разочарование

Когда мы говорим о создании хотя бы простых ботов, глаза наполняются блеском, а в голове мелькают сотни идей, что он должен уметь делать. Однако, когда дело доходит до реализации, оказывается, что ключом к разгадке реальной модели поведения является математика. Да-да, искусственный интеллект куда сложнее написания прикладных программ — одних знаний о проектировании ПО вам не хватит.

Математика — этот тот научный плацдарм, на котором будет строиться ваше дальнейшее программирование. Без знания и понимания этой теории все задумки быстро разобьются о взаимодействие с человеком, ведь искусственный разум на самом деле не больше, чем набор формул.

Стадия 2. Принятие

Когда спесь немного сбита студенческой литературой, можно приступать к практике. Бросаться на LISP или другие функциональные языки пока не стоит — сначала стоит освоиться с принципами проектирования ИИ. Как для быстрого изучения, так и дальнейшего развития прекрасно подойдёт Python — это язык, чаще всего используемый в научных целях, для него вы найдете множество библиотек, которые облегчат ваш труд.

Стадия 3. Развитие

Теперь переходим непосредственно к теории ИИ. Их условно можно разделить на 3 категории:

  • Слабый ИИ – боты, которых мы видим в компьютерных играх, или простые подручные помощники, вроде Siri. Они или выполняют узкоспециализированные задачи или являются незначительным комплексом таковых, а любая непредсказуемость взаимодействия ставит их в тупик.
  • Сильный ИИ – это машины, интеллект которых сопоставим с человеческим мозгом. На сегодняшний день нет реальных представителей этого класса, но компьютеры, вроде Watson очень близки к достижению этой цели.
  • Совершенные ИИ – будущее, машинный мозг, который превзойдёт наши возможности. Именно об опасности таких разработок предупреждают Стивен Хоккинг, Элон Маск и кинофраншиза «Терминатор».

Естественно, начинать следует с самых простых ботов. Для этого вспомните старую-добрую игру «Крестики-нолики» при использовании поля 3х3 и постарайтесь выяснить для себя основные алгоритмы действий: вероятность победы при безошибочных действиях, наиболее удачные места на поле для расположения фигуры, необходимость сводить игру к ничьей и так далее.

Сыграв несколько десятков партий и анализируя собственные действия, вы наверняка сможете выделить все важные аспекты и переписать их в машинный код. Если нет, то продолжайте думать, а эта ссылка здесь полежит на всякий случай.

К слову, если вы всё-таки взялись за язык Python, то создать довольно простого бота можно, обратившись к этому подробному мануалу. Для других языков, таких как C++ или Java, вам также не составит труда найти пошаговые материалы. Почувствовав, что за созданием ИИ нет ничего сверхъестественного, вы сможете смело закрыть браузер и приступить к личным экспериментам.

Стадия 4. Азарт

Теперь, когда дело сдвинулось с мёртвой точки, вам наверняка хочется создать что-то более серьёзное. В этом вам поможет ряд следующих ресурсов:

Как вы поняли даже из названий, это API, которые позволят без лишних затрат времени создать некоторое подобие серьёзного ИИ.

Стадия 5. Работа

Теперь же, когда вы уже вполне ясно представляете, как ИИ создавать и чем при этом пользоваться, пора выводить свои знания на новый уровень. Во-первых, для этого потребуется изучение дисциплины, которое носит название «Машинное обучение». Во-вторых, необходимо научиться работать с соответствующими библиотеками выбранного языка программирования. Для рассматриваемого нами Python это Scikit-learn, NLTK, SciPy, PyBrain и Numpy. В-третьих, в развитии никуда не обойтись от функционального программирования. Ну и самое главное, вы теперь сможете читать литературу о ИИ с полным пониманием дела:

  • Artificial Intelligence for Games, Ян Миллингтон;
  • Game Programming Patterns, Роберт Найсторм;
  • AI Algorithms, Data Structures, and Idioms in Prolog, Lisp, and Java, Джордж Люгер, Уильям Стбалфилд;
  • Computational Cognitive Neuroscience, Рэнделл О’Рейли, Юко Мунаката;
  • Artificial Intelligence: A Modern Approach, Стюарт Рассел, Питер Норвиг.

И да, вся или почти вся литература по данной тематике представлена на иностранном языке, поэтому если хотите заниматься созданием ИИ профессионально — необходимо подтянуть свой английский до технического уровня. Впрочем, это актуально для любой сферы программирования, не правда ли?

В остальном же ваше дальнейшее развитие будет зависеть лишь от практики и желания усложнять алгоритмы. Но будьте осторожны: возможно, совершенный искусственный разум опасен для человечества?

Спасибо GeekBrains за представленный материал.

Как создать искусственный интеллект? История первая. Что такое интеллект?

image

В серии статей мы расскажем о новых подходах в ИИ, моделировании личности и обработке BIG Data, которые недоступны для большинства специалистов по ИИ и общественности. Ценность этой информации в том, что она вся проверена на практике и большинство теоретических наработок реализованы в прикладных проектах.

Многие из вас слышали про современные технологии, которые ассоциируются сегодня с понятием искусственный интеллект, а именно: экспертные системы, нейронные сети, лингвистические алгоритмы, гибридные системы, когнитивные технологии, имитационные(чат-боты) и пр.

Да, многие компании с помощью приведенных выше технологий решают задачи своих клиентов по обработке информации. Некоторые из этих компаний пишут, что создают или создали решения в области искусственного интеллекта. Но интеллект ли это?

Первое, что мы с вами сделаем это определим, что такое интеллект.
  • Обязательно ли встраивать в программу интеллекта компьютера особенности языка (описывать семантику, грамматику, морфологию) или он смог бы выучить языки самостоятельно через взаимодействие с человеком?
  • Если бы вам поставили задачу научить компьютер языку, то что бы вы делали?
  • Если бы в обучении принимали участие только вы, то на кого он был бы похож?
  • Породистого попугая, теоретически способного к общению.
  • Новорожденного ребенка.
  • Во-первых, я попросил вас представить себе (вообразить), «что будет если…». Вы действовали в изменившихся условиях. Возможно вам не хватало информации и знаний, вам было трудно.
  • Во-вторых, вы оказались способны к обучению, познанию, вы нашли знакомую вам аналогию сами или встретили ее в тексте, а возможно вы воспользовались интернетом или спросили совет друга.
В первую очередь интеллект – это способность обучаться и воображать.

Для того чтобы создать алгоритм моделирующий интеллект, первое что нужно сделать это наделить его способностью к обучению, никаких знаний вкладывать в него не нужно.

  1. Чем чаще он слышит слово в разных контекстах, тем быстрее он его запомнит. Слово, которое он произнесет первым скорее всего будет – «мама».
    «Мама тебя любит»
    «Мамочка тебе ручки помоет»
    «Мама тебя целует»
    «А где мама?»
    Обучение происходит за счет избыточности данных.
  2. Чем больше каналов поступления информации задействовано, тем эффективнее обучение:
    ребенок слышит: «Мама тебя любит».
    ребенок видит улыбку мамы.
    ребенок чувствует тепло исходящее от мамы.
    ребенок чувствует вкус и запах маминого молока.
    ребенок говорит «Мама».
  3. Ребенок не сможет воспроизвести слово сразу правильно. Он будет пытаться, пробывать. «М», «Ма», «Мам», «М» … «Мама». Обучение происходит в действии, каждая следующая попытка корректируется пока не получим результат. Метод проб и ошибок. Очень важно получение обратной связи из реальности.
  4. Не воспитывайте своих детей, все равно они будут похожи на вас. Ребенок стремится быть похожим на окружающих его людей. Он подражает им и учится у них. Это один из механизмов моделирования личности, о котором мы поговорим более подробно в следующих статьях.
Какова же роль воображения?

Представьте себе, что вы едите на автомобиле по незнакомой трассе. Проезжаете знак ограничения скорости 80 км/ч. Едите дальше, и видите еще один знак ограничения скорости, но он забрызган грязью и его практически не разобрать. Вы передвигаетесь со скоростью 95 км/ч. Что будете делать? Пока вы принимали решение из-за кустов выглянул сотрудник полиции, и вы увидели лучезарную улыбку на его лице. В голове у вас мгновенно достроился «образ знака», и вы поняли почему тут стоит полицейский, и что вам срочно нужно нажать тормоз. Вы сбрасываете скорость до 55 км/ч, улыбка с лица полицейского мгновенно пропадает, и вы едите дальше.

И еще один интересный пример работы воображения из мира животных – это наблюдение за сороками. Сорока на глазах других сорок зарыла еду на пустыре. Все сороки улетели, но наша сорока вернулась на пустырь и перепрятала еду. Что произошло? Она представила себе(вообразила), «что будет если» прилетит другая сорока, которая видела куда она спрятала еду. Она смоделировала ситуацию и нашла решение как этого избежать.

Воображение – это моделирование ситуации на произвольных условиях.

Как вы уже убедились, интеллект – это не база знаний, это не набор запрограммированных реакций или следование заранее определенным правилам.

Интеллект – это способность к обучению, познанию и адаптации к изменяющимся условиям в процессе решения трудностей.

Вам не кажется, что определяя интеллект мы упустили из виду какие-то важные компоненты или забыли о чем-то рассказать?

Да, мы упустили из виду восприятие, и забыли рассказать про память.

Представьте себе, что вы смотрите в глазок и видите часть буквы:

Что это за буква?

Конечно нет, это же японский иероглиф «вечность».

Перед вами только, что поставили задачу(проблему). Скорее всего вы нашли похожий образ буквы «К» у себя в голове и успокоились.

Ваш интеллект воспринимает все образами и ищет похожий образ в памяти, если его нет, то формируется привязка(якорь) к уже существующим образам и благодаря этому вы запоминаете новую информацию, получаете навыки или опыт.

Образ – субъективное видение реального мира, воспринимаемого при помощи органов чувств (каналов поступления информации).

Восприятие субъективно, потому что зависит от последовательности обучения, последовательности появления образов в жизни человека и их влияния.

Восприятие начинается с распознания образов светло/темно. Открываем глаза – светло, закрываем – темно. Далее человек учится распознавать все более сложные образы – «мама», «папа», мяч, стол, собака. Мы получаем опорные данные, а все последующие образы – это надстройка над предыдущими.

С этой точки зрения обучение – это процесс построения новых взаимосвязей между воспринимаемыми образами и образами, которые уже есть в памяти.

Память служит для хранения образов и их взаимосвязей.

А воображение – это способность достраивать незавершенный образ.

Для обобщения приведем еще один эксперимент из мира животных:

Шимпанзе посадили в клетку, а внутри клетки подвесили гроздь бананов довольно высоко от пола. Сначала шимпанзе прыгала, но быстро устала, и, казалось, потеряла интерес к бананам и уселась, едва обращая на них внимание. Но через некоторое время обезьяна взяла палку, оставленную в клетке, и раскачивала бананы до тех пор, пока они не упали. В другой раз, чтобы достать бананы, шимпанзе удалось соединить две палки, так как каждой палки по отдельности не хватало, чтобы до них дотянуться. Животное справилось и с более сложной задачей, неожиданно поставив под бананами коробку и используя ее как ступеньку.

Шимпанзе показали знакомый ей образ «гроздь бананов». Но образ для нее оказался незавершенным – их нельзя достать и съесть. Но так как это был единственный источник пищи из доступных, то незавершенный образ наращивал внутреннее напряжение и требовал завершения.

Средства для решения проблемы (завершения образа), всегда имелись в наличии, но возникновение решения требовало преобразования имеющихся образов (требовалось обучиться с помощью воображения). Шимпанзе необходимо было представить себе (умственно перечислить все возможные варианты): «что будет если я возьму палку», «а что будет если…» и наиболее вероятные предположения проверить на практике, попробовать и получить обратную связь, опять вообразить, попробовать, получить обратную связь и так далее до тех пор, пока мы не завершим образ(научимся).

Если бы распознание образа иероглифа «вечность» было бы для вас вопросом жизни и смерти, то вы обязательно нашли способ это сделать.

С более популярного языка перейдем к техническому и сформулируем основные понятия, которые мы будем использовать далее:
  • Пересечение избыточной информации из разных информационных каналов создает образ.
  • Обучение – это преобразование информационных потоков в информационное поле.
  • Информационное поле(память) – хранение образов и их взаимосвязей.
  • Воображение – …
    – «Уважаемый читатель, дострой образ воображения самостоятельно, используя избыточную информацию из своего жизненного опыта и этой статьи».
  • Интеллект – это способность обучаться и воображать.

В начале статьи мы перечислили технологии, ассоциирующиеся сегодня с искусственным интеллектом, теперь вы самостоятельно сможете оценить насколько они соответствуют понятию интеллект.

В следующей статье мы рассмотрим такую задачу как интеллектуальный поиск информации в интернете. Определим критерии интеллектуальности, разработаем практические подходы и «пощупаем» реальное приложение, в котором реализованы принципы, описанные в этой статье.

Статья не претендует на истину, является частью наших разработок и исследований. Пишите комментарии, дополняйте материал своими примерами или размышлениями. Обучайтесь и воображайте…

  • искусственный интеллект
  • обучение
  • машинное обучение
  • воображение
  • интеллект
  • псевдомышление

Искусственный интеллект на Python с использованием TensorFlow и Keras

Искусственный интеллект и машинное обучение становятся все более востребованными в современном мире. Многие компании и стартапы активно внедряют технологии искусственного интеллекта для решения бизнес-задач и оптимизации процессов.

Одним из ключевых инструментов для реализации нейро-сетевых архитектур и алгоритмов глубокого обучения является язык программирования Python. Благодаря наличию мощных библиотек, таких как TensorFlow и Keras, создание и обучение нейронных сетей на Python стало достаточно простым.

TensorFlow — это библиотека для машинного обучения, разработанная компанией Google. Она позволяет определять, тренировать и запускать нейронные сети различных архитектур. Keras — библиотека глубокого обучения высокого уровня, может использовать TensorFlow в качестве бэкенда. Keras упрощает создание моделей нейросетей благодаря удобному API.

Цель этой статьи — познакомить читателей с основными принципами глубокого обучения, а также возможностями библиотек TensorFlow и Keras для создания и обучения нейронных сетей на Python. Мы рассмотрим базовые концепции, этапы обучения моделей, а также практические кейсы использования TensorFlow и Keras для решения задач классификации, распознавания и анализа данных.

Изучив эту статью, читатели получат представление о том, как при помощи Python и рассматриваемых библиотек можно создавать эффективные модели искусственного интеллекта

Основные концепции

Что такое нейронные сети и глубокое обучение.

Нейронные сети — это математические модели, которые по своей структуре и принципу работы во многом напоминают сети нервных клеток в мозге. Они состоят из соединенных между собой нейронов — простых вычислительных элементов.

Нейрон получает на вход определенные данные, выполняет над ними вычисления согласно своей функции активации, и передает результат на выход, который подается на входы следующих нейронов.

Такая структура позволяет нейросетям эффективно работать с неструктурированными данными — изображениями, текстом, звуком. Нейронные сети способны анализировать входные данные и находить в них сложные зависимости и паттерны.

Глубокое обучение — это метод машинного обучения на основе искусственных нейронных сетей с большим количеством слоев. Благодаря многослойной структуре, такие сети могут строить более сложные модели и находить скрытые зависимости в данных.

Нейронные сети состоят из нейронов, сгруппированных в слои. Первый слой называется входным, последний — выходным. Также есть один или более промежуточных скрытых слоев.

Каждый нейрон получает данные от нейронов предыдущего слоя, обрабатывает их с помощью функции активации и передает результат нейронам следующего слоя.

В процессе обучения веса связей между нейронами корректируются таким образом, чтобы минимизировать ошибку сети в решении поставленной задачи.

Обучение с подкреплением и обучение с учителем

Обучение с подкреплением (reinforcement learning) — это метод обучения нейросетей, при котором модель должна самостоятельно на практике понять, какие действия приводят к позитивному результату, а какие — к негативному.

Сеть взаимодействует с окружающей средой, выбирает и выполняет различные действия, и получает немедленное «подкрепление» в виде награды или штрафа за эти действия. Цель — максимизировать получаемую суммарную награду.

Например, так обучаются сети для игр, управления роботами, торговых стратегий. Сеть сама исследует все возможные варианты и учится выбирать оптимальные ходы.

Обучение с учителем (supervised learning) подразумевает наличие обучающей выборки с правильными ответами. Сеть обучается предсказывать ответы для новых примеров на основе известных данных.

Этот метод используется в задачах классификации, регрессии, прогнозирования. Сеть получает примеры объектов с «метками» (digits dataset) и учится распознавать эти объекты.

Использование TensorFlow в Python

Установка и импорт TensorFlow

Чтобы начать использовать TensorFlow в Python, нужно установить эту библиотеку. Это можно сделать с помощью менеджера пакетов pip:

pip install tensorflow 

После этого TensorFlow можно импортировать в коде Python:

import tensorflow as tf 

TensorFlow имеет высокоуровневый API (tf.keras) и низкоуровневый API. В данной статье мы будем использовать низкоуровневый API для большего понимания принципов работы.

Импортируем основные компоненты:

import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers 

Теперь TensorFlow доступен для использования в нашем коде на Python для создания и обучения нейронных сетей.

Создание и обучение простой нейронной сети

Давайте создадим и обучим простую полно-связную нейронную сеть на TensorFlow для решения задачи классификации.

Сначала определяем архитектуру — последовательность слоев. Создадим 3 полно-связных слоя с 64, 32 и 10 нейронами:

model = tf.keras.Sequential() model.add(tf.keras.layers.Dense(64, activation='relu')) model.add(tf.keras.layers.Dense(32, activation='relu')) model.add(tf.keras.layers.Dense(10)) 

Для обучения скомпилируем модель с параметрами: функция потерь, оптимизатор и метрики:

model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) 

Далее обучим сеть на тренировочных данных:

model.fit(train_images, train_labels, epochs=5) 

После обучения сеть можно использовать для классификации новых изображений.

Использование различных слоев и функций

TensorFlow предоставляет большой набор готовых слоев и функций для построения нейронных сетей:

  • Полносвязные слои (Dense) — основа для создания полносвязных сетей
  • Сверточные слои (Conv2D, Conv3D) — используются в сверточных сетях для работы с изображениями
  • Пулинг слои (MaxPooling2D) — применяются после сверточных для снижения размерности
  • Рекуррентные слои (LSTM, GRU) — для сетей RNN и обработки последовательностей
  • Слои нормализации (BatchNormalization) — для нормализации активаций в сети
  • Функции активации (ReLU, LeakyReLU, Sigmoid, Softmax и др.) — добавляют нелинейность
  • Функции потерь (Losses) — MSE, CrossEntropy, SparseCategoricalCrossentropy и др.
  • Оптимизаторы (Optimizers) — Adam, SGD, RMSprop и др. для обновления весов

Комбинируя разные слои, можно создавать нейросети практически любой архитектуры для решения широкого круга задач.

Визуализация работы нейросети в TensorFlow

Чтобы лучше понимать и отлаживать нейронные сети, очень полезно визуализировать их работу. В TensorFlow есть инструменты для визуализации:

TensorBoard — позволяет строить графики потерь, метрик, весов нейронов в процессе обучения:

tensorboard = TensorBoard(log_dir="logs") model.fit(data, labels, epochs=10, callbacks=[tensorboard]) 

TensorBoard запускается в браузере и отображает графики из логов обучения.

Кроме того, можно визуализировать активации конкретных нейронов при обработке входных данных с помощью Keras:

layer = model.layers[2] activations = layer.activations import matplotlib.pyplot as plt plt.imshow(activations[0][0. ], cmap='viridis') 

Это помогает понимать, на что именно реагируют нейроны в разных слоях сети.

Визуализация значительно упрощает отладку и оптимизацию нейронных сетей в TensorFlow.

Использование Keras в Python

Установка и импорт Keras

Keras — это высокоуровневая нейро-сетевая библиотека для Python, которая может использовать TensorFlow в качестве бэкенда. Установить Keras можно через pip:

pip install keras 
import keras from keras import models from keras import layers 

Keras имеет простой и понятный API для быстрой разработки нейронных сетей.

В Keras есть два основных способа создания моделей:

  • Последовательный (Sequential) — для линейных стеков слоев
  • Функциональный (Functional) — для произвольных графов слоев

Рассмотрим использование каждого из них.

Создание модели Sequential в Keras

Чтобы создать простую линейную модель в Keras, используется API Sequential:

model = keras.Sequential() model.add(keras.layers.Dense(32, activation='relu')) model.add(keras.layers.Dense(10, activation='softmax')) 

Слои просто добавляются в модель последовательно один за другим с помощью метода add(). Это удобный способ быстро создать полносвязную или сверточную сеть.

Далее модель компилируется и обучается стандартными методами:

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(x_train, y_train, batch_size=64, epochs=5) 

Таким образом, с помощью простого Sequential API в Keras можно определять и обучать нейронные сети всего несколькими строками кода.

Создание модели Functional в Keras

Для создания более сложных сетевых архитектур в Keras используется функциональный API:

inputs = keras.Input(shape=(32,)) x = layers.Dense(64, activation='relu')(inputs) x = layers.Dense(64, activation='relu')(x) outputs = layers.Dense(10, activation='softmax')(x) model = keras.Model(inputs=inputs, outputs=outputs) 

Здесь мы определяем отдельные слои, а затем связываем их в единую модель, указывая входные и выходные тензоры.

Это позволяет создавать разветвленные сети, остаточные связи, многовходовые и многовыходные модели.

Например, можно соединить две разные модели Sequential в одну большую модель Functional.

Такой API дает гибкость в создании нейро-сетевых архитектур произвольной сложности в Keras.

Преимущества Keras как «обертки» над TensorFlow

Keras имеет ряд преимуществ по сравнению с TensorFlow:

  • Более простой и интуитивный API для разработки моделей
  • Меньше кода для решения типовых задач
  • Встроенные функции для обучения, оптимизации, оценки моделей
  • Возможность быстрого прототипирования и итераций
  • Совместимость с TensorFlow как низкоуровневым бэкендом

Но при этом Keras сохраняет гибкость TensorFlow для разработки сложных архитектур.

Примеры обучения разных типов нейросетей в Keras:

  • Полносвязные для классификации текста или чисел
  • Сверточные для обработки изображений
  • Рекуррентные (LSTM, GRU) для текста и временных рядов
  • Автокодировщики для снижения размерности
  • Сети на основе GAN для генерации контента

Keras позволяет легко реализовывать, обучать и применять эти типы архитектур для решения практических задач.

Применение на практике

Решение задачи классификации изображений с TensorFlow

Рассмотрим применение TensorFlow для решения классической задачи компьютерного зрения — классификации изображений.

В качестве данных возьмем один из популярных датасетов — MNIST, содержащий 70 000 изображений рукописных цифр 0-9.

Построим простую сверточную нейронную сеть в TensorFlow:

  • Слой свертки для извлечения признаков
  • Пулинг слой для снижения размерности
  • Полносвязный слой для классификации
model = tf.keras.Sequential() model.add(tf.keras.layers.Conv2D(32, (3,3), activation='relu', input_shape=(28, 28, 1))) model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2))) model.add(tf.keras.layers.Flatten()) model.add(tf.keras.layers.Dense(10, activation='softmax')) 

Обучим модель на данных MNIST:

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(train_images, train_labels, epochs=5, batch_size=64) 

Теперь сеть готова классифицировать рукописные цифры с достаточно высокой точностью!

Классификация изображений — один из самых распространенных примеров применения нейронных сетей на практике с помощью TensorFlow.

Анализ временных рядов с помощью RNN

Рекуррентные нейронные сети (RNN) хорошо подходят для анализа последовательных данных, таких как временные ряды.

Рассмотрим применение RNN на TensorFlow для прогнозирования временного ряда.

Построим простую RNN-сеть с использованием lstm-слоев:

model = tf.keras.Sequential() model.add(tf.keras.layers.LSTM(128, input_shape=(None, 1))) model.add(tf.keras.layers.Dense(1)) model.compile(loss='mae', optimizer='adam') 

Обучим сеть на данных о ценах акций за несколько лет для прогноза цены через месяц:

model.fit(X_train, y_train, epochs=10) 

Теперь используем обученную RNN для предсказания цены на месяц на основе предыдущих данных:

prediction = model.predict(X_test) 

LSTM-сети отлично подходят для многих задач анализа временных рядов: прогнозирование, выявление аномалий, классификация и др.

Заключение

Резюме возможностей глубокого обучения в Python с TensorFlow

В этой статье мы рассмотрели основные возможности библиотеки TensorFlow для создания и обучения нейронных сетей с помощью Python.

TensorFlow предоставляет гибкие инструменты для работы с разными типами сетей и архитектур: полно-связных, сверточных, рекуррентных. Это позволяет решать широкий круг задач: классификация изображений, обработка текста и речи, анализ временных рядов, прогнозирование и др.

Благодаря высокоуровневым и низкоуровневым API можно как быстро прототипировать модели, так и полностью контролировать архитектуру и обучение сетей.

Возможности визуализации в TensorFlow упрощают отладку, мониторинг и оптимизацию нейронных сетей.

Рекомендации по использованию TensorFlow и Keras

TensorFlow и Keras — отличный выбор для создания проектов машинного обучения и глубоких нейронных сетей на Python. Вот несколько рекомендаций по использованию этих инструментов:

  • Начинать лучше с Keras как высокоуровневого и простого в освоении API. Создавать модели с помощью Sequential и Functional API.
  • Постепенно изучать возможности низкоуровневого TensorFlow, чтобы расширять гибкость и контроль при разработке сетей.
  • Использовать предобученные модели (VGG, ResNet, Inception и др.) как базу или для transfer learning при решении практических задач.
  • Применять разные архитектуры: сверточные сети для изображений, RNN и LSTM для последовательных данных.
  • Использовать вспомогательные техники: dropout, batch normalization для обучения больших сетей.
  • Визуализировать процесс обучения сетей с помощью TensorBoard.
  • Разбивать данные на наборы: обучающий, валидационный, тестовый для правильной оценки моделей.
  • Подбирать гиперпараметры (скорость обучения, размер батчей, эпохи) для оптимизации обучения.

Следуя этим рекомендациям, вы сможете эффективно применять TensorFlow и Keras для решения практических задач машинного обучения и построения нейронных сетей.

Как создать искусственный интеллект?

Искусственный интеллект (ИИ) представляет собой область информатики, посвященную созданию компьютерных систем и моделей, способных выполнять задачи, требующие типично человеческого интеллекта. В отличие от человеческого интеллекта, искусственный интеллект стремится к созданию средств и систем, способных автоматизировать деятельность, обучаться на основе опыта и различать образы.

Основные аспекты искусственного интеллекта

  • Машинное обучение — это подразделение искусственного интеллекта, изучающее методы создания систем, способных обучаться на основе опыта.
  • Обработка естественного языка ― эта область фокусируется на создании систем, способных взаимодействовать с человеком на естественном языке.

Узнай, какие ИТ — профессии
входят в ТОП-30 с доходом
от 210 000 ₽/мес
Павел Симонов
Исполнительный директор Geekbrains

Команда GeekBrains совместно с международными специалистами по развитию карьеры подготовили материалы, которые помогут вам начать путь к профессии мечты.

Подборка содержит только самые востребованные и высокооплачиваемые специальности и направления в IT-сфере. 86% наших учеников с помощью данных материалов определились с карьерной целью на ближайшее будущее!

Скачивайте и используйте уже сегодня:

Павел Симонов - исполнительный директор Geekbrains

Павел Симонов
Исполнительный директор Geekbrains

Топ-30 самых востребованных и высокооплачиваемых профессий 2023

Поможет разобраться в актуальной ситуации на рынке труда

Подборка 50+ бесплатных нейросетей для упрощения работы и увеличения заработка

Только проверенные нейросети с доступом из России и свободным использованием

ТОП-100 площадок для поиска работы от GeekBrains

Список проверенных ресурсов реальных вакансий с доходом от 210 000 ₽

Получить подборку бесплатно
Уже скачали 27950

  • Компьютерное зрение ― эта сфера направлена на разработку методов, позволяющих компьютерам распознавать и анализировать изображения и видео.
  • Робототехника ― в области робототехники искусственный интеллект применяется для создания автономных систем и роботов, способных оперировать в различных условиях.

ИИ используется для диагностики, прогнозирования заболеваний и разработки новых лекарств. Он применяется для автоматизации производства и оптимизации процессов в строительстве. В финансовой сфере ИИ используется для анализа рынков, прогнозирования трендов и разработки инвестиционных стратегий. Автономные автомобили, системы управления трафиком и маршрутизации могут быть улучшены с помощью искусственного интеллекта.

Если вы хотите профессионально работать над созданием ИИ, вы можете пройти обучение в GeekBrains. Вы научитесь создавать и обучать нейронные сети за 12 месяцев на 200+ реальных задачах, создадите ИИ, которые распознают изображения и лица, прогнозируют данные и генерируют текст. Выбрать свою программу обучения можно здесь .

Примеры успешных проектов по созданию ИИ

  • AlphaGo ― проект компании DeepMind (дочерней компании Google) ― создает искусственный интеллект для игры в го. В 2016 году AlphaGo сумел победить 18-кратного чемпиона мира Ли Седоля в серии матчей, что считается важным достижением в развитии ИИ.
  • IBM Watson ― платформа искусственного интеллекта, которая объединяет машинное обучение и анализ данных. Watson был знаменит своей победой в игре «Jeopardy!» в 2011 году, переиграв двух самых успешных участников шоу.
  • OpenAI GPT ― проект, созданный OpenAI, целью которого является обучение моделей глубокого обучения на невероятно больших корпусах текстовых данных. Одно из наиболее известных достижений ― GPT-4, модель, способная генерировать тексты, отвечать на вопросы и многое другое, проявляя запредельные способности обработки языка.

Для вас подарок! В свободном доступе до 05.05 —>
Скачайте ТОП-10 нейросетей, которые помогут облегчить
вашу работу
Чтобы получить подарок, заполните информацию в открывшемся окне

  • Tesla Autopilot ― система автоматического управления, разработанная Tesla, предлагающая самостоятельное управление транспортным средством с использованием искусственного интеллекта и компьютерного зрения. Автопилот Tesla значительно улучшает безопасность на дороге и представляет собой важный пример применения ИИ в автомобильной промышленности.
  • DeepFace ― проект разработки системы распознавания лиц, созданный Facebook. DeepFace использует глубокое обучение для сопоставления изображений лиц и достигает эффективности распознавания, превосходящей человеческую способность.

Основы искусственного интеллекта

Нейронные сети

Искусственный интеллект (ИИ) представляет собой широкую область компьютерных наук, фокусирующуюся на разработке систем и моделей, способных выполнять задачи, требующие типично человеческого интеллекта.

Нейронные сети (или искусственные нейронные сети) представляют собой модели, вдохновленные биологическими нейронными сетями человеческого мозга. Они состоят из соединенных и взаимодействующих узлов, называемых «искусственными нейронами», которые обрабатывают информацию.

Основные принципы нейронных сетей:

  • Нейроны и связи: Основные строительные элементы нейронных сетей.
  • Передача сигналов: Входные данные передаются через слои нейронов, каждый из которых обрабатывает информацию, передавая результат дальше.

Дарим скидку от 60%
на обучение «Искусственный интеллект с нуля» до 05 мая
Уже через 9 месяцев сможете устроиться на работу с доходом от 150 000 рублей

  • Обучение: Нейросети обучаются на примерах данных, настраивая свои соединения, чтобы минимизировать ошибку между предсказанными и фактическими результатами.

Нейросети используются в машинном обучении для выполнения различных задач, включая классификацию образов, прогнозирование, распознавание речи и машинный перевод. Эти сети также имеют множество приложений в области компьютерного зрения, обработки естественного языка и других областях, где требуется извлечение сложных закономерностей из данных.

Машинное обучение

Машинное обучение (Machine Learning, ML) ― это область искусственного интеллекта, которая фокусируется на разработке алгоритмов и моделей, которые позволяют компьютерам обучаться на основе данных и делать прогнозы, принимать решения или выполнять задачи без явного программирования для каждого конкретного случая.

Основные концепции машинного обучения:

  1. Обучение на основе данных: Машинное обучение использует большие объемы данных для обучения моделей, опираясь на образцы и примеры, что позволяет моделям обнаруживать закономерности и обучаться на основе этих закономерностей.
  2. Автоматизированное обучение и принятие решений: Модели машинного обучения могут использоваться для автоматического принятия решений, создания прогнозов, классификации данных и решения сложных задач, таких как распознавание образов или прогнозирование трендов.
  3. Алгоритмы и методы: В машинном обучении применяются различные алгоритмы, такие как методы обучения с учителем, обучение без учителя, а также методы усиления, которые используются в зависимости от конкретной задачи и характера данных.

Виды задач в машинном обучении:

  1. Обучение с учителем: В этом виде задач обучающие данные предоставляются с метками или правильными ответами, и модель обучается предсказывать эти ответы на новых данных.
  2. Обучение без учителя: Здесь данные не имеют меток, и целью является выявление шаблонов или группировка данных без заранее известных ответов.
  3. Обучение с подкреплением: Агент обучается взаимодействуя с окружающей средой и получая награды или штрафы на основе своих действий.

Только до 6.05
Скачай подборку материалов, чтобы гарантированно найти работу в IT за 14 дней
Список документов:

ТОП-100 площадок для поиска работы от GeekBrains

20 профессий 2023 года, с доходом от 150 000 рублей

Чек-лист «Как успешно пройти собеседование»

Чтобы зарегистрироваться на бесплатный интенсив и получить в подарок подборку файлов от GeekBrains, заполните информацию в открывшемся окне

Применение машинного обучения:

  • Прогнозирование: Например, прогнозирование спроса, цен на акции или оттока клиентов.
  • Классификация: Различение между категориями, такими как спам и не спам в электронной почте.
  • Рекомендации: Например, рекомендательные системы для фильмов или товаров.
  • Компьютерное зрение и обработка изображений: Распознавание объектов на изображениях, медицинская диагностика, анализ видео.
  • Обработка естественного языка: Анализ текста, машинный перевод, генерация текста и многое другое.

Глубокое обучение

Глубокое обучение (Deep Learning) ― это подраздел машинного обучения, фокусирующийся на использовании нейронных сетей с несколькими слоями для извлечения представлений из данных. В глубоком обучении компьютерная модель пытается обучаться представлять данные в иерархических уровнях абстракции, что позволяет модели в автоматическом режиме извлекать характеристики и сделать высококачественные прогнозы или принимать решения на основе сложных данных.

Основные аспекты глубокого обучения:

  1. Использование нейронной сети с множеством слоев: В отличие от более традиционных моделей машинного обучения, глубокое обучение предполагает применение моделей с большим количеством скрытых слоев, что позволяет извлекать более сложные и абстрактные представления из данных.
  2. Настройка параметров и признаков: Глубокое обучение позволяет модели автоматически изучать внутренние представления данных и искать наилучшие параметры и признаки для решения задачи.
  3. Применение в больших данных: Глубокое обучение часто проявляет свою силу в задачах, связанных с обработкой больших объемов данных, таких как изображения, звук, текст и видео.

Применение глубокого обучения:

  • Компьютерное зрение: Распознавание образов, анализ изображений, автоматическая обработка фото и видео.
  • Обработка естественного языка: Машинный перевод, анализ текста, генерация речи.
  • Рекомендательные системы: Предсказание предпочтений и рекомендации для пользователей.
  • Генеративные модели: Создание синтетических данных, изображений и звука.

Обработка естественного языка

Обработка естественного языка (Natural Language Processing, NLP) ― это область искусственного интеллекта, которая занимается анализом и интерпретацией человеческого языка компьютерами. Используя техники машинного обучения и обработки больших данных, NLP позволяет компьютерам понимать, интерпретировать и взаимодействовать с человеческим языком на естественном уровне.

Проекты по обработке естественного языка ИИ имеют ряд успешных примеров:

  1. Google Translate ― инструмент машинного перевода, который использует технологии NLP для перевода текста с одного языка на другой. С помощью алгоритмов машинного обучения Google Translate обеспечивает все более точные и качественные результаты перевода.
  2. Голосовые помощники, такие как Siri от Apple, Alexa от Amazon и Google Assistant, используютя NLP для распознавания голосовых команд и предоставления ответов на вопросы или выполнения задач. Они могут обрабатывать и понимать естественный язык пользователей, что позволяет им взаимодействовать с технологией голосового управления.
  3. Анализ тональности и сентиментов: Алгоритмы NLP используются для анализа тональности и сентиментов текстовых данных, таких как отзывы о товарах или социальные медиа сообщения. Это помогает компаниям получать представление о мнениях и настроении клиентов, что может быть полезным для принятия управленческих решений.
  4. Генерация текста: Некоторые проекты по NLP работают над алгоритмами, способными генерировать тексты на естественном языке. Примером может служить проект GPT-4, разработанный OpenAI, который создает тексты с высоким качеством и смысловой связностью.
  5. Автокомплит и исправление опечаток: Алгоритмы NLP используются для автокомплита и исправления опечаток в текстовых полях, упрощая и улучшая ввод текста в поисковых системах, социальных сетях и других платформах.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *