Как найти высоту пирамиды по векторам
Перейти к содержимому

Как найти высоту пирамиды по векторам

  • автор:

Аналитическая геометрия

Угол между векторами a1 и a2 находят с помощью формулы:

γ = arccos(0.67) = 47.93 0
Найдем площадь грани с учётом геометрического смысла векторного произведения:

Объем пирамиды, построенный на векторах равен:

Уравнение плоскости ABC запишем как:

или 3x + 2y + 6z-6 = 0
Длина высоты пирамиды, проведенной из вершины D, выражается формулой:
Угол между прямой AD и плоскостью ABC пирамиды можно найти по формуле:
γ = arcsin(0.55) = 33.4 0

  1. объем тетраэдра ABCD;
  2. высоту тетраэдра, опущенную из вершины D на грань ABC.

Учебно-методический

√ курсы переподготовки и повышения квалификации
√ вебинары
√ сертификаты на публикацию методического пособия

Библиотека материалов

√ Общеобразовательное учреждение
√ Дошкольное образование
√ Конкурсные работы
Все авторы, разместившие материал, могут получить свидетельство о публикации в СМИ

Инвестиции с JetLend

Удобный сервис для инвестора и заемщика. Инвестируйте в лучшие компании малого бизнеса по ставкам от 16,9% до 37,7% годовых.

  • Задать вопрос или оставить комментарий
  • Помощь в решении
  • Поиск
  • Поддержать проект

Правила ввода данных

Задать свои вопросы или оставить замечания можно внизу страницы в разделе Disqus .
Можно также оставить заявку на помощь в решении своих задач у наших проверенных партнеров (здесь или здесь).

Поиск

Задать свои вопросы или оставить замечания можно внизу страницы в разделе Disqus .
Можно также оставить заявку на помощь в решении своих задач у наших проверенных партнеров (здесь или здесь).

Задача с треугольной пирамидой

Треугольная пирамида (тетраэдр)

После пройденного пути, который начался на уроке Векторы для чайников и закончился статьёй Задачи с прямой и плоскостью, рассмотрим распространённое задание, главным действующим героем которого является треугольная пирамида (тетраэдр). Посмотрим на эту пространственную фигуру и перечислим её элементарные признаки:

У треугольной пирамиды есть:

– четыре вершины;
– шесть рёбер (сторон);
– четыре грани.

Чем богаты, тем и рады. Каждая из четырёх граней представляет собой треугольник, отсюда и название – треугольная пирамида или тетраэдр.

Не буду перечислять геометрические свойства данной фигуры, известные из школьной программы, поскольку аналитическая геометрия вскрывает пакет молока своим способом. А именно, пристальное внимание уделяется уравнениям рёбер, плоскостей, всевозможным углам пирамиды и некоторым другим вещам, скоро увидите.

Примечание: корректнее говорить «уравнения прямой, содержащей ребро (стОрону)» и «уравнение плоскости, содержащей грань». Но для краткости будем использовать словосочетания «уравнения ребра (сторонЫ)» и «уравнение грани».

Особых трудностей не ожидается, так как весь инструментарий базируется на уже изученных материалах. Но если где-то обнаружатся пробелы, ничего страшного, каждый пункт решения будет снабжён ссылками на нужные уроки, чайник пыхтит – задача решается =)

Кроме того, мы поэтапно выполним точный чертёж пирамиды в прямоугольной системе координат. Это очень важный шаг для тех, кто только начинает разбираться с трёхмерными чертежами.

Приключения с треугольной пирамидой концептуально напоминают задачу с треугольником на плоскости. И начинаются они примерно так:

Треугольная пирамида задана координатами своих вершин

Далее, как правило, вам предложат четыре точки пространства. Причём, прямо сейчас =)

Пусть это будут вершины .

Требуется:

Потребуется много чего…. Счастливчики отделаются 3-4 пунктами, а билет с крупным выигрышем может насчитывать добрый десяток заданий.

Поздравляю, вы сорвали Джекпот!

1) найти длину ребра ;

2) составить уравнения стороны ;

3) найти угол между рёбрами ;

4) найти площадь грани ;

5) найти угол между ребром и плоскостью ;

6) составить уравнение грани ;

7) составить уравнения высоты , опущенной из вершины на грань ;

8) вычислить длину высоты ;

9) найти основание высоты ;

10) вычислить объем пирамиды;

11) составить уравнения медианы грани ;

12) составить уравнение плоскости, проходящей через прямую и вершину ;

13) найти угол между плоскостями и ;

14) выполнить чертёж пирамиды в прямоугольной декартовой системе координат;

15) перекреститься левой пяткой.

Это единственная задача данного урока, и вот так, слегка креативно, я решил записать условие. …немного наскучило выстраивать вереницу Пример 1, Пример 2, Пример 3, ….

Начнём-с бренчать монетами по карманам.

Обозначения вершин треугольной пирамиды

Во-первых, разберёмся с обозначениями вершин. Самый распространённый вариант, когда они обозначены буквами . Выполним схематический чертёж:

Если бегло просмотреть пункты задачи, то легко заметить, что в условии часто встречается грань . Чаще всего требуется составить уравнение этой «особенной» грани, а также найти её площадь. В качестве «особенной» вершины выступает точка , обычно из неё строится перпендикуляр к плоскости .

А всё это я сказал к тому, что в вашей задаче могут быть совершенно другие обозначения вершин. Например, . При таких буквах «особенной» гранью, скорее всего, будет грань , а «особенной» точкой – вершина . В этой связи очень важно выполнить схематический рисунок пирамиды, чтобы не запутаться в дальнейшем алгоритме решение. Да, более подготовленные читатели могут представлять тетраэдр мысленно, но для чайников чертёж просто обязателен.

Итак, на предварительном этапе разбираемся с обозначениями вершин пирамиды, анализируем условие, находим «нужную» плоскость и точку, выполняем бесхитростный набросок на черновике.

С чего начать решение задачи?

Перед тем, как отправиться в весёлое путешествие по пунктам условия, удобно найти три вектора. Почти всегда векторы откладываются от первой вершины, в данном случае – от точки . Решим элементарную задачу урока Векторы для чайников:

Векторы треугольной пирамиды

Элементарность элементарностью, но многие давно заметили, что эти простые вычисления на самом деле… достаточно неприятны! Дело в том, у каждого из нас бывает наваждение а-ля «два плюс два равно пяти», поэтому лучше подстраховаться и воспользоваться программой, которая заранее обсчитает многие параметры пирамиды. Калькулятор можно найти на странице Математические формулы и таблицы.

Кроме того, чтобы эффективнее и КОМФОРТНЕЕ воспринимать информацию, координаты четырёх точек и трёх полученных векторов рекомендую переписать на бумагу.

Как найти длину ребра пирамиды?

1) Найдём длину ребра . Длина данного ребра равна длине вектора :

Я обычно округляю результаты до двух знаков после запятой, но в условии задачи может быть дополнительное указание проводить округления, например, до 1-го или 3-го десятичного знака.

Думаю, в случае необходимости никого не затруднит аналогичным образом найти длины рёбер или . Если же вам предложено найти длину какой-нибудь другой стороны, то используйте формулу нахождения длины отрезка по двум точкам:

Это всё простейшие задачи первого урока про векторы.

Как составить уравнения стороны пирамиды?

2) Найдём уравнения ребра . Очевидно, что речь идёт об уравнениях прямой в пространстве, но нам не сказано, в каком виде их нужно составить. «По умолчанию» обычно подразумевается, что студент запишет канонические уравнения прямой.

Уравнения ребра составим по точке (можно взять ) и направляющему вектору :

В целях проверки следует убедиться, что обе точки удовлетворяют найденным уравнениям.

Как найти угол между рёбрами пирамиды?

Угол между рёбрами пирамиды

3) Найдём угол между сторонами :

Перед вами обычный угол пространственного треугольника, который рассчитывается как угол между векторами. И снова при делах тривиальная формула урока Скалярное произведение векторов:

Заметьте, что в ходе решения можно (и нужно) использовать полученные ранее результаты, в данном случае нам уже известно, что (см. пункт 1).

С помощью обратной функции находим сам угол:

Как найти площадь грани пирамиды?

Площадь грани пирамиды

4) Найдём площадь грани :

Площадь треугольника вычислим с помощью векторного произведения векторов, используя формулу .

Сначала найдём векторное произведение:

И вычислим его длину:

Вынести из-под корня ничего нельзя, поэтому он войдёт в ответ в неизменном виде.

Если получаются страшноватые числа, не обращайте внимания, обычная картина. Главное, не допустить ошибку в вычислениях.

Как найти угол между ребром и гранью?

Угол между ребром и гранью

5) Найдём угол между ребром и плоскостью . Это стандартная задача, рассмотренная в Примере № 3 п. «д» урока Основные задачи на прямую и плоскость. Прошу прощения за неточности ряда последующих чертежей, я рисую от руки, отражая лишь принципиальную картину:

Используем формулу:

И с помощью арксинуса рассчитываем угол:

Как найти уравнение грани?

6) Составим уравнение плоскости . Первая мысль – использовать точки , но есть более выгодное решение. У нас уже найден вектор нормали плоскости . Поэтому уравнение грани составим по точке (можно взять либо ) и вектору нормали :

Для проверки можно подставить координаты точек в полученное уравнение, все три точки должны «подходить».

Как составить уравнения высоты пирамиды?

Высота треугольной пирамиды

7) Звучит грозно, решается просто.

Уравнения высоты , опущенной из вершины на грань , составим по точке и направляющему вектору :

– по умолчанию записываем канонические уравнения.

Вектор нормали в рассматриваемой задаче работает на всю катушку, и как только вам предложили найти площадь грани, составить уравнение грани или уравнения высоты – сразу пробивайте векторное произведение.

Как найти длину высоты пирамиды?

8) Пример № 9 статьи Уравнение плоскости. Длину высоты найдём как расстояние от точки до плоскости :

Результат громоздкий, поэтому позволим себе вольность не избавляться от иррациональности в знаменателе.

Как найти основание высоты пирамиды?

9) Найдём основание высоты . Тема пересечения прямой и плоскости подробно муссировалась на уроке Задачи с прямой и плоскостью. Повторим. Перепишем уравнения высоты в параметрической форме:

Неизвестным координатам точки соответствует вполне конкретное значение параметра :
, или: .

Основание высоты, понятно, лежит в плоскости. Подставим параметрические координаты точки в уравнение :

Кому-то покажется жестью, но я ничего не придумал – такое задание с зубодробительными дробями время от времени встречается на практике.

Полученное значение параметра подставим в координаты нашей точки:

Сурово, но идеально точно. Я проверил.

Как найти объем треугольной пирамиды?

10) Старая добрая задача. В аналитической геометрии объем пирамиды традиционно рассчитывается с помощью смешанного произведения векторов:

В данном случае уместно выполнить проверку, вычислив объем тетраэдра по школьной формуле , где – площадь грани, – длина высоты, опущенной к этой грани.

Уместно ПОТОМУ, что мы знаем и площадь грани , и длину соответствующей высоты

Как составить уравнения медианы грани пирамиды?

Медиана грани пирамиды (пространственного треугольника)

11) Составим уравнения медианы грани . Ничего сложного, обычная медиана обычного пространственного треугольника:

По сравнению с треугольником на плоскости, добавится лишь дополнительная координата. Нам известны вершины , и, по формулам координат середины отрезка, находим реквизиты точки :

Уравнения медианы можно составить по двум точкам, но в статье Уравнения прямой в пространстве, по некоторым причинам я не рекомендовал использовать такой способ. Поэтому сначала найдём направляющий вектор прямой:

За направляющий вектор можно взять любой коллинеарный вектор, и сейчас подходящий момент избавиться от дробей:

Уравнения медианы составим по точке и направляющему вектору :

Заметьте, что уравнения с эстетической точки зрения лучше составить по точке , так как координаты точки «эм» – дробные.

Проверка рутинна, нужно подставить координаты точек в полученные канонические уравнения.

Как составить уравнение плоскости, проходящей через вершину и ребро?

Плоскость, проходящая через точку и прямую

12) Составим уравнение плоскости, проходящей через прямую и вершину :

А задаёт ли вообще прямая и не принадлежащая ей точка плоскость? Да, это «жёсткая конструкция», однозначно определяющая плоскость.

К сожалению, мы не знаем вкусный нормальный вектор плоскости , и самый короткий путь – составить уравнение плоскости по точке и двум неколлинеарным векторам.

В качестве точки обязательно выбираем «одинокую» точку, которая не принадлежит прямой, в данном случае – это вершина . Один из нужных векторов уже известен: , но, конечно же, удобнее выбрать его брата-мажора . В качестве второго вектора подходит либо (и вообще, бесконечно много векторов, но у нас есть только две «готовые» точки прямой ). Учитывая дробные координаты точки «эм», выгоднее найти:

Уравнение плоскости составим по точке и двум неколлинеарным векторам :

Очевидно, что координаты точек должны «подходить» в полученное уравнение плоскости.

Как найти угол между гранью и плоскостью?

Угол между плоскостями в пирамиде

13) Найдём угол между плоскостями и .

Очередной типовик, рассмотренный в Примере № 13 урока Уравнение плоскости.

Данные плоскости пересекаются, и косинус угла между ними выражается формулой: , где – вектор нормали плоскости . Напоминаю, что вектор нормали и его длина уже известны.

Осталось снять вектор нормали: и аккуратно провести вычисления:

Возиться с такими корнями смысла нет, поэтому сразу находим угол:

От тупизны подальше за ответ таки лучше принять острого соседа:

Как начертить пирамиду в прямоугольной системе координат?

14) Выполним точный чертёж пирамиды прямоугольной системе координат. Это проще, чем кажется.

Во-первых, необходимо уметь правильно изображать саму систему координат на клетчатой бумаге. Справка в начале методички Графики и свойства функций.

Во-вторых, необходимо уметь строить точки в трёхмерном пространстве, об этом я уже начал рассказывать в статье Уравнения прямой в пространстве. И сейчас мы продолжим тему.

Вершины пирамиды в прямоугольной системе координат

Построим точку . На мой взгляд, сначала удобно разобраться с первыми двумя координатами – «иксом» и «игреком»: отмеряем 2 единицы в положительном направлении оси и 3 единицы в отрицательном направлении оси . В плоскости прочерчиваем пунктирные дорожки, которые параллельны соответствующим координатным осям. Пересечение дорожек я пометил небольшим ромбиком:

Теперь, в соответствии с отрицательной «зетовой» координатой, отмеряем 1 единицу вниз и тоже проводим пунктирную дорожку. Здесь и будет находиться наша точка , она расположена в нижнем полупространстве.

Для точки отмеряем 5 единиц «на себя» и 4 единицы вправо, строим параллельные осям пунктирные дорожки и находим их точку пересечения. В соответствии с «зетовой» координатой, чертим пунктиром «подставку для точки» – 2 единицы вверх. Данная точка расположена в верхнем полупространстве.

Аналогично строятся две другие точки. Заметьте, что вершина лежит в самой плоскости .

В тетради пунктирные линии аккуратно и не жирно проводятся простым карандашом.

Теперь нужно разобраться в удалённости точек, а в этом как раз и помогут пунктирные линии. Немного включаем пространственное воображение и внимательно смотрим на ось . Очевидно, что самая близкая к нам вершина – , а самая удалённая – .

Видимые рёбра пирамиды

Немало читателей уже мысленно прорисовали пирамиду, тем не менее, остановлюсь на построении подробнее. После того, как построены вершины, чайники могут тонко-тонко карандашом начертить все 6 сторон, и начинать разбираться, какие рёбра видимы, а какие рёбра скрыты. Лучше начать от самой близкой точки . Очевидно, что все три «исходящих» ребра в поле нашего зрения:

Должен предостеречь, так бывает далеко не всегда, одно ребро, например, может быть от нас скрыто. Не теряйте визуального восприятия пространства!

Чертёж пирамиды в прямоугольной системе координат

Какие ещё стороны в зоне видимости? ВиднЫ рёбра , а вот сторона спряталась за пирамидой:

К слову, невидимое нам ребро лежит в нижнем полупространстве и проходит под осями .

Грань пирамиды скрывает все её остальные элементы

Чертеж-конфетка на практике получается не во всех случаях. Бывает, фортуна разворачивается и задом:

Рёбра пирамиды накладываются друг на друга

То есть, грань пирамиды может полностью или частично закрывать всё остальное. Но самое скверное, когда перекрываются рёбра:

Тут сразу три ребра выстроились на одной прямой (правая верхняя прямая). В похожей ситуации приходится жирно прочерчивать накладывающиеся стороны разными цветами и ниже чертежа записывать дополнительные комментарии о расположении пирамиды.

Существуют и более мелкие неприятности, например, одна из сторон пирамиды может наложиться на координатную ось (а то и вовсе расположиться за ней).

Увы, перечисленные случаи – не редкость на практике.

Вот, пожалуй, и все основные сведения о построении треугольной пирамиды в декартовой системе координат.

15) Это пример для самостоятельного решения.

В конце решения желательно остограммиться записать ответ, и по пунктам перечислить полученные результаты. За ваше здоровье!

Автор: Емелин Александр

Блог Емелина Александра

(Переход на главную страницу)

Zaochnik.com – профессиональная помощь студентам,

cкидкa 15% на первый зaкaз, при оформлении введите прoмoкoд: 5530-hihi5

© Copyright mathprofi.ru, Александр Емелин, 2010-2024. Копирование материалов сайта запрещено

Даны координаты вершин пирамиды.

8) уравнение высоты, опущенной из вершины А4 на грань А1 А2 А3. Сделать чертеж.

Решение от преподавателя:

Пример 3:

Решение от преподавателя:

Уравнение плоскости.
Если точки A1(x1; y1; z1), A2(x2; y2; z2), A3(x3; y3; z3) не лежат на одной прямой, то проходящая через них плоскость представляется уравнением:

(x-3)(1*2-0*3) — (y-2)((-2)*2-3*3) + (z+2)((-2)*0-3*1) = 2x + 13y — 3z-38 = 0

https://chart.googleapis.com/chart?cht=tx&chl=sin%20\gamma%20%20%20=%20\frac%7b|Al%20%2B%20Bm%20%2B%20Cn|%7d%7b\sqrt%7bA%5e%7b2%7d%20%2B%20B%5e%7b2%7d%20%2B%20C%5e%7b2%7d%7d\sqrt%7bl%5e%7b2%7d%20%2B%20m%5e%7b2%7d%20%2B%20n%5e%7b2%7d%7d%7d

Угол между прямой A1A4 и плоскостью A1A2A3.
Синус угла между прямой с направляющими коэффициентами (l; m; n) и плоскостью с нормальным вектором N(A; B; C) можно найти по формуле:

Уравнение плоскости A1A2A3: 2x + 13y — 3z-38 = 0
Уравнение прямой A1A4:

γ = arcsin(0.267) = 15.486 o

https://chart.googleapis.com/chart?cht=tx&chl=\frac%7bx%20-%20x_%7b0%7d%7d%7bA%7d%20=%20\frac%7by%20-%20y_%7b0%7d%7d%7bB%7d%20=%20\frac%7bz%20-%20z_%7b0%7d%7d%7bC%7d

Уравнение высоты пирамиды через вершину A4(0,2,2)
Прямая, проходящая через точку M0(x0;y0;z0) и перпендикулярная плоскости Ax + By + Cz + D = 0 имеет направляющий вектор (A;B;C) и, значит, представляется симметричными уравнениями:
Уравнение плоскости A1A2A3: 2x + 13y — 3z-38 = 0

Уравнение плоскости через вершину A4(0,2,2)
Плоскость, проходящая через точку M0(x0;y0;z0) и параллельная плоскости Ax + By + Cz + D = 0 имеет направляющий вектор (A;B;C) и, значит, представляется уравнением:
A(x-x0) + B(y-y0) + C(z-z0) = 0
Уравнение плоскости A1A2A3: 2x + 13y — 3z-38 = 0
2(x-0)+13(y-2)-3(z-2) = 0
или
2x+13y-3z-20 = 0

Объем пирамиды

Если заданы координаты точек вершин пирамиды, то координаты векторов находятся по формуле:
X = xj — xi; Y = yj — yi; Z = zj — zi
где xi, yi, zi — координаты точки Аi; xj, yj, zj — координаты точки Аj;

Инструкция . Заполните координаты вершин, нажмите Далее . Полученное решение сохраняется в файле MS Word . или

Где (-18) нашли как определитель матрицы
∆ = 3·(3·2 — 2·(-2)) — 1·(6·2 — 2·3) + 2·(6· (-2) — 3·3) = -18

Пример №2 . Найти объем пирамиды, отсекаемой от угла плоскостью, проходящей через точки А(0,2,-1), В(3,4,2), С(-3,0,4).

Библиотека материалов

√ Общеобразовательное учреждение
√ Дошкольное образование
√ Конкурсные работы
Все авторы, разместившие материал, могут получить свидетельство о публикации в СМИ

Инвестиции с JetLend

Удобный сервис для инвестора и заемщика. Инвестируйте в лучшие компании малого бизнеса по ставкам от 16,9% до 37,7% годовых.

Онлайн-университет

Профессии с трудоустройством. Наши направления:
√ Программирование и Дизайн
√ Маркетинг и Управление
√ Игры и Мультимедиа

  • Задать вопрос или оставить комментарий
  • Помощь в решении
  • Поиск
  • Поддержать проект

Правила ввода данных

Задать свои вопросы или оставить замечания можно внизу страницы в разделе Disqus .
Можно также оставить заявку на помощь в решении своих задач у наших проверенных партнеров (здесь или здесь).

Поиск

Задать свои вопросы или оставить замечания можно внизу страницы в разделе Disqus .
Можно также оставить заявку на помощь в решении своих задач у наших проверенных партнеров (здесь или здесь).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *