Как найти наименьшее общее кратное трех чисел
Перейти к содержимому

Как найти наименьшее общее кратное трех чисел

  • автор:

Нахождение наименьшего общего кратного: способы, примеры нахождения НОК

Что такое нок в математике? Продолжим разговор о наименьшем общем кратном, который мы начали в разделе « НОК – наименьшее общее кратное, определение, примеры». В этой теме мы узнаем, как найти наименьшее общее кратное, какие есть для этого способы для трех чисел и более, разберем вопрос о том, как находить НОК отрицательного числа. Также разберемся, что такое нок и нод, как найти нок и нод.

Вычисление наименьшего общего кратного (НОК) через НОД

Мы уже узнали, что такое нок, а также установили связь наименьшего общего кратного с наибольшим общим делителем (кратность показывает в расчетах во сколько раз один показатель больше другого). Теперь как настоящие математики научимся определять НОК через НОД (нок и нод чисел натуральных). Сначала разберемся, как найти нок для положительных чисел. Сделать это можно и онлайн или на калькуляторе, но лучше научиться самостоятельно.

Поиск наименьшего общего кратного через наибольший общий делитель можно по формуле НОК ( a , b ) = a · b : НОД ( a , b ) .

Необходимо найти НОК чисел 126 и 70 .

Решение

Начнем решать. Примем a = 126 , b = 70 . Подставим значения в формулу вычисления наименьшего общего кратного через наибольший общий делитель НОК ( a , b ) = a · b : НОД ( a , b ) .

Найдем НОД чисел 70 и 126 . Для этого нам понадобится алгоритм Евклида: 126 = 70 · 1 + 56 , 70 = 56 · 1 + 14 , 56 = 14 · 4 , следовательно, NOD ( 126 , 70 ) = 14 .

Вычислим НОК: НОК ( 126 , 70 ) = 126 · 70 : НОД ( 126 , 70 ) = 126 · 70 : 14 = 630 .

Ответ: NOC ( 126 , 70 ) = 630 .

Найдите нок чисел 68 и 34 .

Решение

Как находить нод? НОД в данном случае нейти несложно, так как 68 делится на 34 . Вычислим самое маленькое общее кратное по формуле: НОК ( 68 , 34 ) = 68 · 34 : НОД ( 68 , 34 ) = 68 · 34 : 34 = 68 .

Ответ: НОК ( 68 , 34 ) = 68 .

В этом примере мы использовали правило нахождения наименьшего общего кратного для целых положительных чисел a и b : если первое число делится на второе, что НОК этих чисел будет равно первому числу.

Нахождение НОК с помощью разложения чисел на простые множители

Теперь давайте рассмотрим способ нахождения НОК, который основан на разложении чисел на простые множители. Перед тем, как это узнавать, дадим небольшое определение.

Для нахождения наименьшего общего кратного нам понадобится выполнить ряд несложных действий:

  • составляем произведение всех простых множителей чисел, для которых нам нужно найти НОК;
  • исключаем их полученных произведений все простые множители;
  • полученное после исключения общих простых множителей произведение будет равно НОК данных чисел.

Этот способ нахождения наименьшего общего кратного основан на равенстве НОК ( a , b ) = a · b : НОД ( a , b ) . Если посмотреть на формулу, то станет понятно: произведение чисел a и b равно произведению всех множителей, которые участвуют в разложении этих двух чисел. При этом НОД двух чисел равен произведению всех простых множителей, которые одновременно присутствуют в разложениях на множители данных двух чисел.

У нас есть два числа 75 и 210 . Мы можем разложить их на множители следующим образом: 75 = 3 · 5 · 5 и 210 = 2 · 3 · 5 · 7 . Если составить произведение всех множителей двух исходных чисел, то получится: 2 · 3 · 3 · 5 · 5 · 5 · 7 .

Если исключить общие для обоих чисел множители 3 и 5 , мы получим произведение следующего вида: 2 · 3 · 5 · 5 · 7 = 1050 . Это произведение и будет нашим НОК для чисел 75 и 210 .

Найдите НОК чисел 441 и 700 , разложив оба числа на простые множители.

Решение

Найдем все простые множители чисел, данных в условии:

441 147 49 7 1 3 3 7 7

700 350 175 35 7 1 2 2 5 5 7

Получаем две цепочки чисел: 441 = 3 · 3 · 7 · 7 и 700 = 2 · 2 · 5 · 5 · 7 .

Произведение всех множителей, которые участвовали в разложении данных чисел, будет иметь вид: 2 · 2 · 3 · 3 · 5 · 5 · 7 · 7 · 7 . Найдем общие множители. Это число 7 . Исключим его из общего произведения: 2 · 2 · 3 · 3 · 5 · 5 · 7 · 7 . Получается, что НОК ( 441 , 700 ) = 2 · 2 · 3 · 3 · 5 · 5 · 7 · 7 = 44 100 .

Ответ: НОК ( 441 , 700 ) = 44 100 .

Дадим еще одну формулировку метода нахождения НОК путем разложения чисел на простые множители.

Раньше мы исключали из всего количества множителей общие для обоих чисел. Теперь мы сделаем иначе:

  • разложим оба числа на простые множители:
  • добавим к произведению простых множителей первого числа недостающие множители второго числа;
  • получим произведение, которое и будет искомым НОК двух чисел.

Вернемся к числам 75 и 210 , для которых мы уже пробовали искать НОК в одном из прошлых примеров. Разложим их на простые множители: 75 = 3 · 5 · 5 и 210 = 2 · 3 · 5 · 7 . К произведению множителей 3 , 5 и 5 числа 75 добавим недостающие множители 2 и 7 числа 210 . Получаем: 2 · 3 · 5 · 5 · 7 . Это и есть НОК чисел 75 и 210 .

Необходимо вычислить НОК чисел 84 и 648 .

Решение

Разложим числа из условия на простые множители: 84 = 2 · 2 · 3 · 7 и 648 = 2 · 2 · 2 · 3 · 3 · 3 · 3 . Добавим к произведению множителей 2 , 2 , 3 и 7 числа 84 недостающие множители 2 , 3 , 3 и
3 числа 648 . Получаем произведение 2 · 2 · 2 · 3 · 3 · 3 · 3 · 7 = 4536 . Это и есть наименьшее общее кратное чисел 84 и 648 ​​​​​​ ​.

Ответ: НОК ( 84 , 648 ) = 4 536 .

Нахождение НОК трех и большего количества чисел

Независимо от того, с каким количеством чисел мы имеем дело, алгоритм наших действий всегда будет одинаковым: мы будем последовательно находить НОК двух чисел. На этот случай есть теорема.

Предположим, что у нас есть целые числа a 1 , a 2 , … , a k . НОК m k этих чисел находится при последовательном вычислении m 2 = НОК ( a 1 , a 2 ) , m 3 = НОК ( m 2 , a 3 ) , … , m k = НОК ( m k − 1 , a k ) .

Теперь рассмотрим, как можно применять теорему для решения конкретных задач.

Необходимо вычислить наименьшее общее кратное четырех чисел 140 , 9 , 54 и 250 .

Решение задания

Введем обозначения: a 1 = 140 , a 2 = 9 , a 3 = 54 , a 4 = 250 .

Начнем с того, что вычислим m 2 = НОК ( a 1 , a 2 ) = НОК ( 140 , 9 ) . Применим алгоритм Евклида для вычисления НОД чисел 140 и 9 : 140 = 9 · 15 + 5 , 9 = 5 · 1 + 4 , 5 = 4 · 1 + 1 , 4 = 1 · 4 . Получаем: НОД ( 140 , 9 ) = 1 , НОК ( 140 , 9 ) = 140 · 9 : НОД ( 140 , 9 ) = 140 · 9 : 1 = 1 260 . Следовательно, m 2 = 1 260 .

Теперь вычислим по тому е алгоритму m 3 = НОК ( m 2 , a 3 ) = НОК ( 1 260 , 54 ) . В ходе вычислений получаем m 3 = 3 780 .

Нам осталось вычислить m 4 = НОК ( m 3 , a 4 ) = НОК ( 3 780 , 250 ) . Действуем по тому же алгоритму. Получаем m 4 = 94 500 .

НОК четырех чисел из условия примера равно 94500 .

Ответ: НОК ( 140 , 9 , 54 , 250 ) = 94 500 .

Как видите, вычисления получаются несложными, но достаточно трудоемкими. Чтобы сэкономить время, можно пойти другим путем.

Предлагаем вам следующий алгоритм действий:

  • раскладываем все числа на простые множители;
  • к произведению множителей первого числа добавляем недостающие множители из произведения второго числа;
  • к полученному на предыдущем этапе произведению добавляем недостающие множители третьего числа и т.д.;
  • полученное произведение будет наименьшим общим кратным всех чисел из условия.

Необходимо найти НОК пяти чисел 84 , 6 , 48 , 7 , 143 .

Решение

Разложим все пять чисел на простые множители: 84 = 2 · 2 · 3 · 7 , 6 = 2 · 3 , 48 = 2 · 2 · 2 · 2 · 3 , 7 , 143 = 11 · 13 . Простые числа, которым является число 7 , на простые множители не раскладываются. Такие числа совпадают со своим разложением на простые множители.

Теперь возьмем произведение простых множителей 2 , 2 , 3 и 7 числа 84 и добавим к ним недостающие множители второго числа. Мы разложили число 6 на 2 и 3 . Эти множители уже есть в произведении первого числа. Следовательно, их опускаем.

Продолжаем добавлять недостающие множители. Переходим к числу 48 , из произведения простых множителей которого берем 2 и 2 . Затем добавляем простой множитель 7 от четвертого числа и множители 11 и 13 пятого. Получаем: 2 · 2 · 2 · 2 · 3 · 7 · 11 · 13 = 48 048 . Это и есть наименьшее общее кратное пяти исходных чисел.

Ответ: НОК ( 84 , 6 , 48 , 7 , 143 ) = 48 048 .

Нахождение наименьшего общего кратного отрицательных чисел

Для того чтобы найти наименьшее общее кратное отрицательных чисел, эти числа необходимо сначала заменить на числа с противоположным знаком, а затем провести вычисления по приведенным выше алгоритмам.

НОК ( 54 , − 34 ) = НОК ( 54 , 34 ) , а НОК ( − 622 , − 46 , − 54 , − 888 ) = НОК ( 622 , 46 , 54 , 888 ) .

Такие действия допустимы в связи с тем, что если принять, что a и − a – противоположные числа,
то множество кратных числа a совпадает со множеством кратных числа − a .

Необходимо вычислить НОК отрицательных чисел − 145 и − 45 .

Решение

Произведем замену чисел − 145 и − 45 на противоположные им числа 145 и 45 . Теперь по алгоритму вычислим НОК ( 145 , 45 ) = 145 · 45 : НОД ( 145 , 45 ) = 145 · 45 : 5 = 1 305 , предварительно определив НОД по алгоритму Евклида.

Получим, что НОК чисел − 145 и − 45 равно 1 305 .

Ответ: НОК ( − 145 , − 45 ) = 1 305 .

Как найти наименьшее общее кратное

Поиск наименьшего общего кратного — задача, с которой все мы сталкиваемся при необходимости найти общий знаменатель для дроби. Ниже для удобства обозначения мы будем использовать не только термин «наименьшее общее кратное», но и его сокращение — НОК.

Давайте рассмотрим подробнее, что значит НОК.

Определение 1

Наименьшее общее кратное нескольких чисел $a, b, c, d$ — это наименьшее натуральное число, которое делится без остатка на все эти числа.

Нахождение НОК

Существует несколько различных приёмов для определения НОК:

  • Через связь наименьшего общего кратного и наибольшего общего делителя;
  • Через разложение чисел, для которых ищется НОК, на простые множители.

Как искать НОК через наибольший общий делитель

Для начала вспомним, что такое наибольший общий делитель.

Замечание 1

Наибольшим общим делителем называют наибольшее число, в результате деления на которое двух или более чисел не остаётся остатка.

Для любых натуральных чисел $a$ и $b$ справедливо следующее тождество:

$НОД(a, b) \cdot НОК(a, b)=a \cdot b$.

Способы нахождения НОД для определения НОК:

  1. Бинарный метод.
  2. Алгоритм Евклида.

Алгоритм Евклида для поиска НОК рассмотрен подробнее в другой статье на нашем сайте.

Также НОД можно вычислить через каноническое разложение чисел на простые множители. Для этого числа, для которых ищется НОД, сначала раскладывают на простые множители.

После этого отдельной строкой выписывают все простые множители, входящие в каждое разложение хотя бы один раз.

После к простым множителям подписывают их наименьшую степень и перемножают. Полученное произведение будет являться наибольшим общим делителем данных чисел.

«Как найти наименьшее общее кратное» ��
Помощь эксперта по теме работы
Решение задач от ИИ за 2 минуты
Помощь с рефератом от нейросети

Если же НОД уже известен, то для определения НОК через этот метод можно воспользоваться следующей формулой:

Здесь $НОД$ — наибольший общий делитель для чисел $a$ и $b$.

Как найти НОК через разложение чисел

Определение 2

Представление числа через произведение простых чисел, возведённых в разные степени, называется разложением числа на простые множители.

Из этого определения можно сделать следующий вывод: любое натуральное число кроме единицы либо является простым, либо его можно разложить до простых множителей, причём единственным способом. Числа, которые можно разложить на простые множители, называются составными.

Для осуществления разложения числа на множители используют признаки делимости чисел.

Существуют пары чисел, наибольший общий делитель которых равен единице. Такие числа называются взаимно простыми.

При поиске НОК для взаимно простых чисел их разложения не содержат одних и тех же простых множителей.

Существует ещё одна закономерность для взаимно простых чисел: если число делится на каждое из взаимно простых чисел, то оно делится и на их произведение.

Наиболее частым является каноническое разложение, при его использовании числа раскладываются на множители в порядке возрастания.

Теперь, узнав основные используемые понятия, можно перейти к алгоритму определения НОК данным методом.

Алгоритм определения НОК

  1. Разложить числа, для которых нужно найти наименьшее общее кратное на простые множители.
  2. В отдельную строчку выписать все простые числа, которые входят в каждое из разложений.
  3. Для каждого из простых чисел выписать максимальную степень, с которой оно встречается в разложении.
  4. Записать произведение всех выписанных простых чисел в максимальных встреченных степенях.

Как найти НОК трех чисел и более

Для того чтобы найти НОК более чем для двух чисел, сначала необходимо выбрать 2 любых числа из необходимых и найти НОК для них, после этого нужно взять следующее число и найти НОК для него и уже посчитанного ранее наименьшего общего кратного.

Эту процедуру необходимо выполнять до тех пор, пока не закончатся числа, для которых необходимо найти наименьшее общее кратное.

Другим способом найти НОК сразу для нескольких чисел является выписывание в строку всех простых множителей, содержащихся в разложениях, с их наибольшей степенью и затем их последующее перемножение.

Решение:

  1. Чтобы привести дроби $\frac$ и $\frac$ к общему знаменателю, для начала необходимо найти общее кратное для чисел $104$ и $520$, стоящих под чертой дроби. Для этого разложим их на множители: $104=1 \cdot 2^3 \cdot 13$; $520=1 \cdot 2^3 \cdot 5 \cdot 13$. Теперь вычислим наименьшее общее кратное. Чтобы это сделать, выпишем каждый простой множитель, встречающийся в разложениях обоих чисел хотя бы раз с его наибольшей степенью, имеем: $НОК= \cdot 2^3 \cdot 5 \cdot 13=520$. Теперь найдём множители для каждой из дробей, на которые их необходимо для множить. Для дроби $\frac$ этот множитель равен $520:104=5$, для второй дроби $\frac$ он равен $520:520=1$. Следовательно, первую дробь нужно домножить на $\frac$, а вторую на $\frac$: $\frac$ и $\frac$; $\frac$ и $\frac$.
  2. Найдём наименьшее кратное для дробей $\frac$ и $\frac$. Для этого вновь разложим знаменатели используя каноническое разложение: $132=1 \cdot 2^2 \cdot 3^1 \cdot 11^1$; $154= 1 \cdot 2 \cdot 7^1 \cdot 11^1$. Найдём НОК: $НОК=2^2 \cdot 3 \cdot 7 \cdot 11 = 924$. Множитель, на который нужно умножить числитель и знаменатель первой дроби для приведения к общему знаменателю — $7$, а вторую нужно домножить на $6$. Получаем: $\frac$ и $\frac$; $\frac$ и $\frac$.
  3. Сначала разложим на простые множители знаменатели дробей $\frac;\frac;\frac; \frac;\frac$: $4=1 \cdot 2^2$; $20=1 \cdot 2^2 5$; $60=1 \cdot 2^2 \cdot 3 \cdot 5$; $75= 1 \cdot 3 \cdot 5^2$; $25=1 \cdot 5^2$. Выпишем все множители при старших степенях для вычисления НОК: $НОК=2^2 \cdot 3 \cdot 5^2=300$. Множители для каждой дроби соответственно $75;15;5;4;12$. В результате приведения к общему знаменателю получим: $\frac; \frac; \frac; \frac; \frac; \frac$.

Наименьшее общее кратное онлайн

Наименьшим общим кратным (НОК) двух целых чисел m и n называется наименьшее натуральное число, которое делится и на m, и на n.

Как найти наименьшее общее кратное?

Наименьшее общее кратное двух целых чисел m и n равно отношению произведения m и n к наибольшему общему делителю НОД(m, n):

НОК(m, n) = (m · n) / НОД(m, n).

Пример. Найти НОД и НОК чисел 450 и 390.

Представим числа как произведение их простых множителей:

450 = 2 · 3 · 3 · 5 · 5 = 2 1 · 3 2 · 5 2 ,

390 = 2 · 3 · 5 · 13 = 2 1 · 3 1 · 5 1 · 13 1 .

Видим, что общими являются множители 2, 3 и 5. Наименьшая степень каждого множителя 1. Тогда НОД(450, 390) = 2 · 3 · 5 = 30.

Зная НОД этих чисел, можно легко найти их НОК. Для этого произведение чисел следует разделить на их НОД:

НОК(450, 390) = (450 · 390) / 30 =

= (2 · 3 · 3 · 5 · 5 · 2 · 3 · 5 · 13) / (2 · 3 · 5) =

= 2 · 3 · 5 · 5 · 13 = 5850

Онлайн калькулятор наименьшего общего кратного

Онлайн калулятор вычисляет наименьшее общее кратное нескольких чисел. Числа вводите через запятую.

Смотрите также
  • Разложение числа в произведение простых множителей
  • Нахождение наибольшего общего делителя
  • Признаки делимости

Наименьшее общее кратное (НОК): определение, примеры и свойства

Приступим к изучению наименьшего общего кратного двух и более чисел. В разделе мы дадим определение термина, рассмотрим теорему, которая устанавливает связь между наименьшим общим кратным и наибольшим общим делителем, приведем примеры решения задач.

Общие кратные – определение, примеры

В данной теме нас будет интересовать только общие кратные целых чисел, отличных от нуля.

Общее кратное целых чисел – это такое целое число, которое кратно всем данным числам. Фактически, это любое целое число, которое можно разделить на любое из данных чисел.

Определение общих кратных чисел относится к двум, трем и большему количеству целых чисел.

Согласно данному выше определению для числа 12 общими кратными числами будут 3 и 2 . Также число 12 будет общим кратным для чисел 2 , 3 и 4 . Числа 12 и — 12 являются общими кратными числами для чисел ± 1 , ± 2 , ± 3 , ± 4 , ± 6 , ± 12 .

В то же время общим кратным числом для чисел 2 и 3 будут числа 12 , 6 , − 24 , 72 , 468 , − 100 010 004 и целый ряд любых других.

Если мы возьмем числа, которые делятся на первое число из пары и не делятся на второе, то такие числа не будут общими кратными. Так, для чисел 2 и 3 числа 16 , − 27 , 5 009 , 27 001 не будут общими кратными.

0 является общим кратным для любого множества целых чисел, отличных от нуля.

Если вспомнить свойство делимости относительно противоположных чисел, то получается, что некоторое целое число k будет общим кратным данных чисел точно также, как и число – k . Это значит, что общие делители могут быть как положительными, так и отрицательными.

Для всех ли чисел можно найти НОК?

Общее кратное можно найти для любых целых чисел.

Предположим, что нам даны k целых чисел a 1 , a 2 , … , a k . Число, которое мы получим в ходе умножения чисел a 1 · a 2 · … · a k согласно свойству делимости будет делиться на каждый из множителей, который входил в изначальное произведение. Это значит, что произведение чисел a 1 , a 2 , … , a k является наименьшим общим кратным для этих чисел.

Сколько всего общих кратных могут иметь данные целые числа?

Группа целых чисел может иметь большое количество общих кратных. Фактически, их число бесконечно.

Предположим, что у нас есть некоторое число k . Тогда произведение чисел k · z , где z – это целое число, будет являться общим кратным чисел k и z . С учетом того, что количество чисел бесконечно, то и количество общих кратных бесконечно.

Наименьшее общее кратное (НОК) – определение, обозначение и примеры

Вспомним понятие наименьшего числа из данного множества чисел, которое мы рассматривали в разделе «Сравнение целых чисел». С учетом этого понятия сформулируем определение наименьшего общего кратного, которое имеет среди всех общих кратных наибольшее практическое значение.

Наименьшее общее кратное данных целых чисел – это наименьшее положительное общее кратное этих чисел.

Наименьшее общее кратное существует для любого количества данных чисел. Наиболее употребимой для обозначения понятия в справочной литературе является аббревиатура НОК. Краткая запись наименьшего общего кратного для чисел a 1 , a 2 , … , a k будет иметь вид НОК ( a 1 , a 2 , … , a k ) .

Наименьшее общее кратное чисел 6 и 7 – это 42 . Т.е. НОК ( 6 , 7 ) = 42 . Наименьшее общее кратное четырех чисел — 2 , 12 , 15 и 3 будет равно 60 . Краткая запись будет иметь вид НОК ( — 2 , 12 , 15 , 3 ) = 60 .

Не для всех групп данных чисел наименьшее общее кратное очевидно. Часто его приходится вычислять.

Связь между НОК и НОД

Наименьшее общее кратное и наибольший общий делитель связаны между собой. Взаимосвязь между понятиями устанавливает теорема.

Наименьшее общее кратное двух положительных целых чисел a и b равно произведению чисел a и b , деленному на наибольший общий делитель чисел a и b , то есть, НОК ( a , b ) = a · b : НОД ( a , b ) .

Предположим, что мы имеем некоторое число M , которое кратно числам a и b . Если число M делится на a , также существует некоторое целое число z , при котором справедливо равенство M = a · k . Согласно определению делимости, если M делится и на b , то тогда a · k делится на b .

Если мы введем новое обозначение для НОД ( a , b ) как d , то сможем использовать равенства a = a 1 · d и b = b 1 · d . При этом оба равенства будут взаимно простыми числами.

Мы уже установили выше, что a · k делится на b . Теперь это условие можно записать следующим образом:
a 1 · d · k делится на b 1 · d , что эквивалентно условию a 1 · k делится на b 1 согласно свойствам делимости.

Согласно свойству взаимно простых чисел, если a 1 и b 1 – взаимно простые числа, a 1 не делится на b 1 при том, что a 1 · k делится на b 1 , то b 1 должно делиться k .

В этом случае уместно будет предположить, что существует число t , для которого k = b 1 · t , а так как b 1 = b : d , то k = b : d · t .

Теперь вместо k подставим в равенство M = a · k выражение вида b : d · t . Это позволяет нам прийти к равенству M = a · b : d · t . При t = 1 мы можем получить наименьшее положительное общее кратное чисел a и b , равное a · b : d , при условии, что числа a и b положительные.

Так мы доказали, что НОК ( a , b ) = a · b : НОД ( a , b ) .

Установление связи между НОК и НОД позволяет находить наименьшее общее кратное через наибольший общий делитель двух и более данных чисел.

Теорема имеет два важных следствия:

  • кратные наименьшего общего кратного двух чисел совпадает с общими кратными этих двух чисел;
  • наименьшее общее кратное взаимно простых положительных чисел a и b равно их произведению.

Обосновать эти два факта не составляет труда. Любое общее кратное M чисел a и b определяется равенством M = НОК ( a , b ) · t при некотором целом значении t . Так как a и b взаимно простые, то НОД ( a , b ) = 1 , следовательно, НОК ( a , b ) = a · b : НОД ( a , b ) = a · b : 1 = a · b .

Наименьшее общее кратное трех и большего количества чисел

Для того, чтобы найти наименьшее общее кратное нескольких чисел, необходимо последовательно найти НОК двух чисел.

Предположим, что a 1 , a 2 , … , a k – это некоторые целые положительные числа. Для того, чтобы вычислить НОК mk этих чисел, нам необходимо последовательно вычислить m 2 = НОК ( a 1 , a 2 ) , m 3 = НОК ( m 2 , a 3 ) , … , m k = НОК ( m k — 1 , a k ) .

Доказательство 2

Доказать верность второй теоремы нам поможет первое следствие из первой теоремы, рассмотренной в данной теме. Рассуждения строятся по следующему алгоритму:

  • общие кратные чисел a 1 и a 2 совпадают с кратными их НОК, фактически, они совпадают с кратными числа m 2 ;
  • общие кратные чисел a 1 , a 2 и a 3 совпадают с общими кратными чисел m 2 и a 3 , следовательно, совпадают с кратными числа m 3 ;
  • общие кратные чисел a 1 , a 2 , … , a k совпадают с общими кратными чисел m k — 1 и a k , следовательно, совпадают с кратными числа m k ;
  • в связи с тем, что наименьшим положительным кратным числа m k является само число m k , то наименьшим общим кратным чисел a 1 , a 2 , … , a k является m k .

Так мы доказали теорему.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *