Как найти центр полуокружности
Перейти к содержимому

Как найти центр полуокружности

  • автор:

Центры тяжести и моменты инерции основных простых фигур

Моменты инерции и сопротивления простых фигур

Формулы площадей, центров тяжести, осевых и полярных моментов инерции, моментов сопротивления и других геометрических характеристик основных простых фигур: прямоугольника, квадрата, равнобедренного и прямоугольного треугольника, круга, полукруга, четверти круга, кольцевого и тонкостенного сечений.

Обозначения в формулах:
C — положение центра тяжести фигуры;
A — площадь сечения;
Ix , Iy — осевые моменты инерции сечения относительно главных осей;
Ix1 , Iy1 — осевые моменты инерции относительно вспомогательных (смещённых) осей;
Iρ — полярный момент инерции сечения;
Wx , Wy — осевые моменты сопротивления;
Wρ — полярный момент сопротивления

Прямоугольник

Центр тяжести прямоугольника

Прямоугольник высотой h и шириной b.

Центр тяжести прямоугольника в точке пересечения его диагоналей, на расстоянии половины высоты (h/2) по вертикали и половины ширины (b/2) по горизонтали.

Площадь

Центральные осевые моменты инерции прямоугольника
Центральные осевые моменты инерции прямоугольника
Моменты инерции относительно смещенных осей, проходящих через нижнюю левую точку
Моменты инерции прямоугольника относительно смещенных осей
Осевые моменты сопротивления прямоугольного сечения
Осевые моменты сопротивления прямоугольника

Квадрат

Квадрат — это частный случай прямоугольника, у которого высота равна ширине, т.е. h=b=a.

Центр тяжести квадрата

Центр тяжести квадрата находится так же на пересечении диагоналей — на расстоянии половины стороны (a/2) по высоте и ширине.

Площадь

Центральные осевые моменты инерции квадрата

Моменты инерции относительно смещенных осей, проходящих через нижнюю левую точку

Осевой момент сопротивления квадратного сечения

Треугольник равнобедренный

Центр тяжести треугольника

Равнобедренный треугольник высотой h и шириной основания b.

Центр тяжести треугольника располагается в точке пересечения его медиан на расстоянии 1/3 высоты от основания и 2/3 высоты от его вершин.

Центральные осевые моменты инерции треугольника

Площадь

Центральные осевые моменты инерции треугольника

Момент инерции относительно смещенной оси x1, проходящей через его основание

Прямоугольный треугольник

Центр тяжести прямоугольного треугольника

Прямоугольный треугольник высотой h и шириной основания b.

Центр тяжести прямоугольного треугольника располагается аналогично, на пересечении медиан на расстоянии 1/3 высоты от основания и 2/3 высоты от вершины.

Площадь

Центральные осевые моменты инерции прямоугольного треугольника
Центральные осевые моменты инерции прямоугольного треугольника
Моменты инерции относительно смещенных осей x1 и y1, проходящих через точку, соединяющую его катеты
Моменты инерции прямоугольного треугольника относительно смещенных осей

Трапеция

Равнобокая трапеция высотой H и шириной оснований: малого a и большого b.
Центр тяжести трапеции
Площадь трапеции

Центр тяжести на линии, соединяющей середины оснований трапеции, на высоте, определяемой по формуле:
Координата центра тяжести трапеции

Круг

Круг диаметром D (d) или радиусом R (r)
Центр тяжести круга
Площадь круга через его диаметр и радиус
Площадь круга
Центральные осевые и полярный моменты инерции круга
Моменты инерции круга
Осевые и полярный моменты сопротивления
Моменты сопротивления круга

Полукруг

Половина круга диаметром D (d) или радиусом R (r)
Центр тяжести полукруга
Площадь
Площадь полукруга
Осевые моменты инерции полукруга
Осевые моменты инерции полукруга

Четверть круга

Четверть круга диаметром D (d) или радиусом R (r)
Центр тяжести четверти круга
Площадь
Площадь четверти круга
Центральные осевые моменты инерции четверти круга
Центральные осевые моменты инерции четверти круга
Моменты инерции относительно смещенных осей x1 и y1
Моменты инерции четверти круга относительно смещенных осей

Кольцо

Кольцо с внешним диаметром D и внутренним d, (радиусами: внешним R и внутренним r)
Центр тяжести кольца
Отношение внутреннего диаметра (радиуса) к внешнему обозначается буквой c.

Площадь
Площадь кольца
Центральные осевые и полярный моменты инерции кольца
Моменты инерции кольца
Осевые и полярный моменты сопротивления
Моменты сопротивления кольца

Тонкостенное сечение (труба)

Тонкостенный профиль (сечение трубы) средним радиусом R0 и толщиной стенки трубы t при R0>>t
Центр тяжести сечения трубы
Площадь

Центральные осевые и полярный моменты инерции трубного сечения
Моменты инерции сечения труб
Осевые и полярный моменты сопротивления
Осевые и полярный моменты сопротивления труб

Пример определения координат центра тяжести сложной фигуры:

Координаты центра тяжести плоской фигуры

Координаты центра тяжести плоской фигуры формулы

Координаты центра тяжести плоской фигуры находятся из выражений:

тогда координаты центра тяжести плоской фигуры (приложение интеграла) определяются по формуле:

координаты центра тяжести плоской фигуры формула

γ — const

Найти координаты центра тяжести полуокружности

График полуокружности

Площадь полукруга определяется по формуле:

Уравнение полуокружности имеет вид:

Уравнение полуокружности

Найдем Sx:

пример с решением

Отсюда находим yc:

координаты центра полуокружности решение

Таким образом, центра тяжести полуокружности имеет координаты:

2528

Как найти центр тяжести полукруга ?

Гуглил эту тему, появляется формула (для y оси) 4r/3pi, но я никак не пойму, откуда эта формула выводится. Можете объяснить с рисунком ?

Лучший ответ

Можно проинтегрировать, но это долго объяснять. В данном случае можно воспользоваться второй теоремой Паппа — Гульдина: Объём тела, образованного вращением плоской фигуры вокруг оси, расположенной в той же плоскости и не пересекающей фигуру, равен площади фигуры, умноженной на длину окружности, радиусом которой служит расстояние от оси вращения до центра масс фигуры

В нашем случае объём тела вращения — объём шара: (4/3)pi*R^3; расстояние от оси вращения: l (значит длина окружности 2pi*l); площадь фигуры — половина круга: (pi*R^2)/2.

Таким образом: (4/3)pi*R^3 = (2pi*l)*(pi*R^2)/2 l = 4R/3pi

ПоршМастер (1782) 3 года назад

Речь идет не о шаре, а о полуКРУГЕ. А ты вообще посчитала объема шара, из которого вырезали шар поменьше. Полукруга нет даже в разрезе. В разрезе будет круг из которого вырезали круг

Остальные ответы

Из частного случая сектора через интегрирование

Не знаю как все, но мы в технической механике центром полукруга считаем ту точку откуда мы проводим радиус этого полукруга.

Роман ЕфремовУченик (183) 1 год назад

Простите хотел удалить, но это го*но требует 35 рублей за удаление ответа, так что давайте представим что этого ответа просто нет и вам это кажется

36. Центр тяжести дуги окружности, кругового сектора, полукруга.

Центр тяжести дуги окружности

Дуга имеет ось симметрии. Центр тяжести лежит на этой оси, т.е. yC = 0.

dl – элемент дуги, dl = Rdφ, R – радиус окружности, x = Rcosφ, L = 2αR,

xC = R(sinα/α).

Центр тяжести кругового сектора

Сектор радиуса R с центральным углом 2α имеет ось симметрии Ox, на которой находится центр тяжести.

Разбиваем сектор на элементарные секторы, которые можно считать треугольниками. Центры тяжести элементарных секторов располагаются на дуге окружности радиуса (2/3)R.

Центр тяжести сектора совпадает с центром тяжести дуги AB:

Полукруг:

37. Кинематика. Кинематика точки. Способы задания движения точки.

Кинематика – раздел механики, в котором изучаются движение материальных тел с геометрической точки зрения, без учета массы и действующих на них сил. Способы задания движения точки: 1) естественный, 2) координатный, 3) векторный.

Кинема́тика точки — раздел кинематики, изучающий математическое описание движения материпльных точек. Основной задачей кинематики является описание движения при помощи математического аппарата без выяснения причин, вызывающих это движение.

Естественный сп. указывается траектория точки, закон ее движения по этой траектории, начало и направление отсчета дуговой координаты: s=f(t) – закон движения точки. При прямолинейном движении: х=f(t).

Координатный сп. положение точки в пространстве определяется тремя координатами, изменения которых определяют закон движения точки: x=f1(t), y=f2(t), z=f3(t).

Если движение в плоскости, то два уравнения движения. Уравнения движения описывают уравнение траектории в параметрической форме. Исключив из уравнений параметр t, получаем уравнение траектории в обычном виде:f(x,y)=0 (для плоск-ти).

Векторный сп. положение точки определяется ее радиус-вектором , проведенным из какого-либо центра. Кривая, которая вычерчивается концом какого-либо вектора, назыв. годографом этого вектора. Т.е. траектория – годограф радиус-вектора.

38.Связь между координатным и векторным, координатным и естественным способами задания движения точки.

СВЯЗЬ ВЕКТОРНОГО СПОСОБА С КООРДИНАТНЫМ И ЕСТЕСТВЕННЫМ выражается соотношениями:

где — орт касательной к траектории в данной точке, направленный в сторону отсчета расстояний, — орт нормали к траектории в данной точке, направленный в сторону центра кривизны (см. рис. 3).

СВЯЗЬ КООРДИНАТНОГО СПОСОБА С ЕСТЕСТВЕННЫМ. Уравнение траектории f(x, y)=z; f1(x, z)=y получается из уравнений движения в координатной форме посредством исключения времени t. Дополнительным анализом значений, которые могут принимать координаты точки, определяется тот участок кривой , который является траекторией. Например, если движение точки задано уравнениями: x=sin t; y=sin 2 t=x 2 , то траекторией точки является тот участок параболы у=х 2 , для которого -1≤x≤+1, 0≤x≤1. Начало и направление отсчета расстояний выбираются произвольно, этим в дальнейшем определяется знак скорости и величина и знак начального расстояния s0.

Закон движения определяется зависимостью:

знак + или — определяется в зависимости от принятого направления отсчета расстояний.

Скорость точки – это кинематическая мера ее движения, равная производной по времени от радиус-вектора этой точки в рассматриваемой системе отсчета. Вектор скорости направлен по касательной к траектории точки в сторону движения

Вектор скорости (v) — это расстояние, которое тело проходит в определенном направлении за единицу времени. Обратите внимание, что определение вектора скорости очень похоже на определение скорости, за исключением одного важного различия: скорость тела не указывает направление движения, а вектор скорости тела указывает и скорость, и направление движения. Следовательно, необходимы две переменные, которые описывают вектор скорости тела: скорость и направление. Физические величины, у которых есть значение и направление, называют векторными величинами.

Вектор скорости тела может время от времени изменяться. Если или его скорость, или направление изменяются, скорость тела также меняется. Постоянный вектор скорости подразумевает неизменную скорость и неизменное направление, тогда как термин «постоянная скорость» подразумевает только неизменное значение, не принимая во внимание направление. Термин «вектор скорости» часто используется попеременно с термином «скорость». Они оба выражают расстояние, которое тело проходит в единицу времени

Ускорение точки – это мера изменения ее скорости, равная производной по времени от скорости этой точки или второй производной от радиус-вектора точки по времени. Ускорение характеризует изменение вектора скорости по величине и направлению и направлено в сторону вогнутости траектории.

это отношение изменения скорости к промежутку времени, за который это изменении произошло. Определить среднее ускорение можно формулой:

где – вектор ускорения.

Направление вектора ускорения совпадает с направлением изменения скорости Δ = 0 (здесь 0 – это начальная скорость, то есть скорость, с которой тело начало ускоряться).

В момент времени t1 (см. рис 1.8) тело имеет скорость 0. В момент времени t2 тело имеет скорость . Согласно правилу вычитания векторов найдём вектор изменения скорости Δ = 0. Тогда определить ускорение можно так:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *