Как найти центр окружности в треугольнике
Перейти к содержимому

Как найти центр окружности в треугольнике

  • автор:

как найти центр окружности ,описанной около треугольника(вписанной в треугольник)?

1. Центр описанной окружности лежит на пересечении серединных перпендикуляров — значит как минимум два таких перпендикуляра придется построить и если это задача не на построение — есть формулы. Написала бы что задано)
2. А вписанная окружность лежит на пересечении биссектрис, а остальные пожелания см. п. 1

Похожие вопросы

Как найти центр окружности в треугольнике

Как найти центр окружности без измерительных инструментов?

Действительно как? Вот у вас есть круг. И есть необходимость или желание узнать, где у него центр.
Самое простое — это вписать в круг квадрат или прямоугольник.
Затем провести диагонали соединяющие противоположные углы. Место пересечения этих линий и будет центром окружности, а каждая из этих линий будет являться её диаметром. Место пересечения диаметров окружности всегда будет является её центром.

Из этого так же следует, что гипотенуза вписанного в окружность прямоугольного треугольника так же всегда является ее диаметром. И здесь, чтобы найти центр окружности, достаточно найти ее середину. Ну, а середина находится легко: из вершины треугольника (прямого угла) к основанию (гипотенузе) проводится перпендикулярная линия. В прямоугольном треугольнике она делит основание ровно пополам. А так как гипотенуза — это диаметр окружности, то поделённая пополам, дает два радиуса и соответственно центр окружности.

Но центр можно найти не только с помощью прямоугольного треугольника. Можно вписать в окружность равносторонний или равнобедренный треугольник. С первым вообще все просто, как и с прямоугольником. У него все стороны равны и не составит труда вписать его в окружность. Здесь достаточно провести две медианы (они же высоты) из любых углов. Место их пересечения и будет центр окружности. Если их продолжить до линии окружности, то получим два пересекающихся диаметра.

Для нахождения центра круга при помощи равнобедренного треугольника необходимо произвести следующие действия. Вписать в окружность два любых равнобедренных треугольника. Форма треугольников и длина их бедер не имеют значения. После из вершин этих треугольников необходимо провести к основанию треугольника медиану/высоту. И продолжить ее до соприкосновения с окружностью. Место пересечения этих медиан/высот и будет центром круга. А они, как уже вы догадались, будут являться его диаметрами.

Как нетрудно увидеть, если чуть-чуть подумать, то можно вообще не чертить никаких фигур. Надо просто отложить внутри окружности две любых линии (хорды), не параллельных друг другу. Провести перпендикулярные линии через середины этих хорд к противоположной точке на окружности. И снова пересечение этих двух будет являться центром.

Так же центр окружности можно найти с помощью вписанной в круг трапеции. Используя трапеции несложно начертить прямоугольник или прямоугольный треугольник. А уже имея их — найти центр.


Но как начертить трапецию, треугольник или даже квадрат, не имея линейки с разметкой и транспортира? Как получить прямой угол? Ведь не все люди обладают точным глазомером и твердостью руки.
Для этого достаточно иметь под рукой веревку, полоску бумаги, да просто прямую палку. С помощью любого из этих подручных средств можно отложить на окружности линию (хорду). Далее, имея постоянную длинную отрезка, соединяя любые четыре точки на окружности, можно легко получить квадрат или равносторонний треугольник, соединив три точки. Ну а для верности, чтобы получить прямой угол можно применить лист бумаги, коробок спичек, симкарту, стол — любые предметы которые имеют прямой угол.
Осталось добавить, что выше перечисленные способы справедливы и в том случае, если окружность вписана в квадрат или равнобедренный треугольник, или проведены касательные к окружности.

Как найти центр окружности в треугольнике

Окружность, вписанная в треугольник. Окружность, описанная вокруг треугольника

  • радиус, проведенный в точку касания, перпендикулярен касательной;
  • диаметр, проходящий через середину хорды, перпендикулярен ей;
  • квадрат длины касательной равен произведению длины секущей на ее внешнюю часть;
  • центральный угол измеряется градусной мерой дуги, на которую он опирается;
  • вписанный угол измеряется половиной дуги, на которую он опирается, или дополняет его половину до 180°;
  • касательные, проведенные к окружности из одной точки, равны;
  • произведение секущей на ее внешнюю часть — величина постоянная.
Перейти к выполнению теста: Тест. Окружность, вписанная в треугольник. Окружность, описанная вокруг треугольника

Описанная окружность (ЕГЭ 2022)

Первый вопрос, который может возникнуть: описанная – вокруг чего?

Ну, вообще-то иногда бывает и вокруг чего угодно, а мы будем рассуждать об окружности, описанной вокруг (иногда ещё говорят «около») треугольника.

Что же это такое?

Описанная окружность — коротко о главном

Определение

Окружность, описанная около треугольника – это окружность, которая проходит через все три вершины этого треугольника.

Центр описанной окружности

Вокруг всякого треугольника можно описать окружность, при том единственным образом.

Центр этой окружности – точка пересечения серединных перпендикуляров к сторонам треугольника.

Радиус описанной окружности

Обрати внимание: теорема синусов сообщает, что для того чтобы найти радиус описанной окружности, нужна одна сторона (любая!) и противолежащий ей угол.

Расположение центра описанной окружности

В остроугольном треугольнике центр описанной окружности всегда лежит внутри треугольника

В тупоугольном треугольнике центр описанной окружности всегда лежит вне треугольника

В прямоугольном треугольнике центр описанной окружности лежит на середине гипотенузы, а радиус равен половине гипотенузы.

Описанная окружность — подробнее

Определение

Описанная окружность – такая окружность, что проходит через все три вершины треугольника, около которого она описана.

Свойства и центр описанной кружности

И вот, представь себе, имеет место удивительный факт:

Вокруг всякого треугольника можно описать окружность.

Почему этот факт удивительный?

Потому что треугольники ведь бывают разные!

И для всякого найдётся окружность, которая пройдёт через все три вершины, то есть описанная окружность.

Доказательство этого удивительного факта мы приведем чуть позже, а здесь заметим только, что если взять, к примеру, четырехугольник, то уже вовсе не для всякого найдётся окружность, проходящая через четыре вершины.

Вот, скажем, параллелограмм – отличный четырехугольник, а окружности, проходящей через все его четыре вершины – нет!

А есть только для прямоугольника:

Ну вот, а треугольник всякий и всегда имеет собственную описанную окружность! И даже всегда довольно просто найти центр этой окружности.

Центр окружности, описанной около треугольника, лежит на пересечении серединных перпендикуляров к сторонам этого треугольника.

Знаешь ли ты, что такое серединный перпендикуляр?

Серединный перпендикуляр — это прямая, проходящая через середину отрезка и перпендикулярная ему.

Прямая \( \displaystyle a\) – это серединный перпендикуляр к отрезку \( \displaystyle AB\).

А теперь посмотрим, что получится, если мы рассмотрим целых три серединных перпендикуляра к сторонам треугольника.

Вот оказывается (и это как раз и нужно доказывать, хотя мы и не будем), что все три перпендикуляра пересекутся в одной точке. Смотри на рисунок – все три серединных перпендикуляра пересекаются в одной точке \( \displaystyle O\).

Это и есть центр описанной около (вокруг) треугольника \( \displaystyle ABC\) окружности.

Как ты думаешь, всегда ли центр описанной окружности лежит внутри треугольника? Представь себе – вовсе не всегда!

Если треугольник тупоугольный, то центр его описанной окружности лежит снаружи!

А вот если остроугольный, то внутри:

Что же делать с прямоугольным треугольником?

В прямоугольном треугольнике центр описанной окружности лежит на середине гипотенузы.

Если треугольник – прямоугольный, то не надо строить аж три перпендикуляра, а можно просто найти середину гипотенузы – и центр описанной окружности готов!

Да ещё с дополнительным бонусом:

В прямоугольном треугольнике радиус описанной окружности равен половине гипотенузы.

Раз уж заговорили о радиусе описанной окружности: чему он равен для произвольного треугольника? И есть ответ на этот вопрос: так называемая теорема синусов.

В произвольном треугольнике:
\( \Large \displaystyle \frac=2R\)

\( \displaystyle \begin\frac=2R\\\frac=2R\end\)

Так что ты теперь всегда сможешь найти и центр , и радиус окружности, описанной вокруг треугольника.

То есть чтобы найти радиус описанной окружности, нужно знать одну (!) сторону и один (!) противолежащий ей угол.

Хорошая формула? По-моему, просто отличная!

Доказательство теоремы

Теорема. Вокруг всякого треугольника можно описать окружность, при том единственным образом.

Центр этой окружности – точка пересечения серединных перпендикуляров к сторонам треугольника.

Давай наберёмся мужества и докажем эту теорему.

Если ты читал уже тему «Биссектриса» разбирался в том, почему же три биссектрисы пересекаются в одной точке, то тебе будет легче, но и если не читал – не переживай: сейчас во всём разберёмся.

Доказательство будем проводить, используя понятие геометрического места точек (ГМТ).

Геометрическое место точек, обладающих свойством «\( \displaystyle X\)» — такое множество точек, что все они обладают свойством «\( \displaystyle X\)» и никакие другие точки этим свойством не обладают.

Ну вот, например, является ли множество мячей – «геометрическим местом» круглых предметов? Нет, конечно, потому что бывают круглые …арбузы.

А является ли множество людей, «геометрическим местом», умеющих говорить? Тоже нет, потому что есть младенцы, которые говорить не умеют.

В жизни вообще сложно найти пример настоящего «геометрического места точек». В геометрии проще. Вот, к примеру, как раз то, что нам нужно:

Серединный перпендикуляр к отрезку является геометрическим местом точек, равноудалённых от концов отрезка.

Тут множество – это серединный перпендикуляр, а свойство «\( \displaystyle X\)» — это «быть равноудаленной (точкой) от концов отрезка».

Проверим? Итак, нужно удостовериться в двух вещах:

  • Всякая точка на серединном перпендикуляре находится на одинаковом расстоянии от концов отрезка
  • Всякая точка, которая равноудалена от концов отрезка – находится на серединном перпендикуляре к ему

Проверим 1. Пусть точка \( \displaystyle M\) лежит на серединном перпендикуляре к отрезку \( \displaystyle AB\).

Соединим \( \displaystyle M\) с \( \displaystyle A\) и с \( \displaystyle B\).Тогда линия \( \displaystyle MK\) является медианой и высотой в \( \displaystyle \Delta AMB\).

Значит, \( \displaystyle \Delta AMB\) – равнобедренный, \( \displaystyle MA=MB\) – убедились, что любая точка \( \displaystyle M\), лежащая на серединном перпендикуляре, одинаково удалена от точек \( \displaystyle A\) и \( \displaystyle B\).

Теперь 2. Почти точно так же, но в другую сторону. Пусть точка \( \displaystyle M\) равноудалена от точек \( \displaystyle A\) и \( \displaystyle B\), то есть \( \displaystyle MA=MB\).

Возьмём \( \displaystyle K\) – середину \( \displaystyle AB\) и соединим \( \displaystyle M\) и \( \displaystyle K\). Получилась медиана \( \displaystyle MK\). Но \( \displaystyle \Delta AMB\) – равнобедренный по условию \( \displaystyle (MA=MB)\Rightarrow MK\) не только медиана, но и высота, то есть – серединный перпендикуляр. Значит, точка \( \displaystyle M\) — точно лежит на серединном перпендикуляре.

Всё! Полностью проверили тот факт, что серединный перпендикуляр к отрезку является геометрическим местом точек, равноудаленных от концов отрезка.

Это все хорошо, но не забыли ли мы об описанной окружности? Вовсе нет, мы как раз подготовили себе «плацдарм для нападения».

А теперь, внимание!

Отсюда следует сразу несколько вещей:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *