Как направлен вектор мгновенной скорости
Перейти к содержимому

Как направлен вектор мгновенной скорости

  • автор:

4. Что такое вектор мгновенной скорости? Куда он направлен? Почему?

Решебник по физике за 10 класс В.А.Касьянов

Решебник по физике за 10 класс (В.А.Касьянов, 2009 год),
задача №4
к главе «2. Кинематика материальной точки. §11. Скорость. Ответы на вопросы».

Комментарии

Поиск по сайту

Нашли о и ш бку?

Выделите её мышкой и нажмите CTRL + ENTER

Большое спасибо всем, кто помогает делать сайт лучше! =)

Мгновенная и средняя скорость

Если материальная точка находится в движении, то ее координаты подвергаются изменениям. Этот процесс может происходить быстро или медленно.

Мгновенная и средняя скорость

Модуль средней скорости по пути равняется υ = S ∆ t .

Мгновенная скорость точки. Формулы

Мгновенная скорость характеризует движение в определенный момент времени. Выражение «скорость тела в данный момент времени» считается не корректным, но применимым при математических расчетах.

Мгновенная скорость точки. Формулы

Пример 1

Дан закон прямолинейного движения точки x ( t ) = 0 , 15 t 2 — 2 t + 8 . Определить ее мгновенную скорость через 10 секунд после начала движения.

Решение

Мгновенной скоростью принято называть первую производную радиус-вектора по времени. Тогда ее запись примет вид:

υ ( t ) = x ˙ ( t ) = 0 . 3 t — 2 ; υ ( 10 ) = 0 . 3 × 10 — 2 = 1 м / с .

Ответ: 1 м / с .

Движение материальной точки задается уравнением x = 4 t — 0 , 05 t 2 . Вычислить момент времени t о с т , когда точка прекратит движение, и ее среднюю путевую скорость υ .

Решение

Вычислим уравнение мгновенной скорости, подставим числовые выражения:

υ ( t ) = x ˙ ( t ) = 4 — 0 , 1 t .

4 — 0 , 1 t = 0 ; t о с т = 40 с ; υ 0 = υ ( 0 ) = 4 ; υ = ∆ υ ∆ t = 0 — 4 40 — 0 = 0 , 1 м / с .

Ответ: заданная точка остановится по прошествии 40 секунд; значение средней скорости равняется 0 , 1 м / с .

Как направлен вектор мгновенной скорости в различных точках траектории движения тела, брошенного горизонтально?

Вектор мгновенной скорости всегда направлен по касательной к траектории движения. Сначала горизонтально, но поскольку траектория искривляется вниз (гравитация, знаете ли. ) вектор тоже загибается вниз.

Остальные ответы
векторов различных точек тела одинаковы.
по касательной

Вектор мгновенной скорости тела, брошенного горизонтально (сопротивление среды не учитыватся?) , направлен по касательной к соответствующей опрокинутой параболе, раствор которой зависит от скорости в первый момент.

Если нет сопротивления воздуха, составляющая х этого вектора постоянна, а у — изменяется во времени по закону g*t; Соответственно, угол наклона этого вектора к горизонтали arctg(g*t/x). Сначала он равен 0, затем увеличивается, стремясь к pi/2 при t -> + \infty

2.3. Вектор скорости. Средняя и мгновенная скорость.

вижения различных тел различаются тем, что тела за одинаковые промежутки (равные) времени проходят различные по величине пути. Для характеристики такого движения вводят понятие скорости.

1) Введем понятие средней скорости () – это величина, равная отношению перемещения к тому промежутку времени, в течение которого это перемещение произошло .

2) За малый промежуток времени t точка проходит путь S, совершая перемещение (рис. 2.6). При t0 отношения и практически перестают изменяться как по величине, так и по направлению и стремятся к определенному пределу

и

который будет выражать вектор мгновенной скорости, т.е. скорости в данный момент времени.

В математике данный предел называется производной, следовательно, скорость можно определить как производную радиус-вектора движущейся точки по времени:

или по модулю .

При бесконечном уменьшении t различие между S и будет уменьшаться и в пределе они совпадут, тогда можно записать, что модуль скорости

, (2.1)

т.е. мгновенная скорость при неравномерном движении численно равна первой производной пути по времени.

Итак, вектор мгновенной скорости в любой точке траектории направлен по касательной к траектории (и совпадает с направлением вектора перемещения) и численно равен первой производной пути по времени.

Единица измерения v: [v]=м/с.

Если рассматривать движение в пространстве, то величину и направление вектора скорости можно представить через проекции этого вектора на направления осей x, y, z (рис. 2.7).

;

где ,

– единичные вектора по осям x, y, z.

Следовательно,

2.4. Путь при неравномерном движении.

а малый промежуток времени t перемещение графически изображается в виде прямоугольника, высота которого равна некоторому значению средней скорости v (рис.2.8). Тогда для любого промежутка времени от 0 до t суммируют все эти элементарные площадки S, т.е. графически эта сумма представляет собой площадь фигуры ABCD (vср.t). Чаще всего площадь фигуры дает нам также путь, пройденный при неравномерном движении (математически это записывается как предел).

.

Если v(t) = const, то движение равномерное,

v(t)  const – то движение неравномерное.

2.5. Ускорение. Ускорение при равнопеременном и неравнопеременном прямолинейном движении.

При неравномерном движении необходимо знать закономерность, по которой скорость изменяется со временем. Для этого вводится величина, характеризующая быстроту изменения скорости со временем и называемая ускорением «».

Рис. 2.9

усть материальная точка переместилась за малый промежуток времени t из точки А, где она имела скорость в точку В, где скорость (рис.2.9). Приращение скорости точки есть вектор , равный разности конечной и начальной скоростей: .

тношение изменения скорости к промежутку времени, за который это изменение произошло, называется средним ускорением . Это понятие вводится для неравнопеременного движения.

Среднее ускорение направлено также как приращение скорости, т.е. под углом к траектории в сторону ее вогнутости.

В общем случае величина среднего ускорения может быть различной на различных участках траектории и зависеть от величины промежутка времени t, по которому проводится усреднение. В пределе при t  0 точка В будет стремиться к точке А и среднее ускорение по пути АВ превратится в мгновенное или истинное ускорение в точке А.

Поэтому . (2.2)

Итак, мгновенное ускорение движения в любой точке траектории есть вектор, направленный под углом к траектории в сторону ее вогнутости, а по величине равный пределу среднего ускорения при стремлении промежутка времени к нулю.

Из выше приведенных формул следует, что ускорение измеряется в м/с 2 ; [а] = м/с 2 .

По модулю величина ускорения равна . Т.е. величина ускорения определяется первой производной скорости v по времени или второй производной пути по времени.

Если рассматривать движение тела в пространстве, то вектор ускорения можно представить через его проекции на оси X, Y, Z, аналогично как это делали для вектора .

;

Замечание: Следует помнить, что ускорение характеризует не только изменение модуля скорости, но и изменение направления вектора скорости. Например, равномерное движение по окружности является ускоренным из-за изменения направления вектора скорости с течением времени, хотя модуль скорости остается неизменным.

Рассмотрим частный случай ускоренного движения.

Прямолинейное движение с постоянным ускорением называется равноускоренным (a = const). В этом случае мгновенное ускорение будет равно среднему ускорению за любой промежуток времени. И тогда

; (2.3)

В зависимости от поведения скорости со временем различают равноускоренное и «равнозамедленное» движения. Кавычки поставлены, чтобы подчеркнуть, что в любом случае движение происходит с постоянным ускорением.

1. Если а > 0, то движение равноускоренное. Из (2.3) следует, что v=v0+a(t — t0) и при t0 = 0

при a > 0 скорость v возрастает. Направления и совпадают.

Зная зависимость v от t можно подсчитать путь, пройденный телом при равнопеременном движении (рис. 2.10).

Имеем v=v0 + at, домножим на dt.

Интегрируем слева от 0 до S, справа от 0 до t. Получаем, что

.

. (2.4)

Данная формула верна, если за время движения знаки начальной скорости и ускорения совпадают. Наклон прямой v0+at на рисунке 2.10 зависит от величины «а», чем «а» больше, тем больше угол наклона. «S» численно рано площади заштрихованной фигуры.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *