Как найти сумму функционального ряда
Перейти к содержимому

Как найти сумму функционального ряда

  • автор:

15. Функциональный ряд. Сумма ряда. Определение равномерной сходимости ряда. Критерий Коши равномерной сходимости функционального ряда.

Определение. Ряд, члены которого являются функциями, называется функциональным рядом. Его обозначают:

Определение. Если при ряд (1) сходится, тоназывается точкой сходимости ряда (1).

Определение. Множество всех значений , при которых функциональный ряд сходится, называется областью сходимости этого ряда.

Очевидно, что в области сходимости функционального ряда его сумма является функцией от . Будем ее обозначать.

—n-ная частичная сумма.

Ряд называется сходящимся равномерно, если последовательность его частичных сумм сходится равномерно.

Функциональный ряд называется равномерно сходящимся в некоторой области Х, если для любого сколь угодно малого числа > 0 можно указать такое целое число N() > 0, зависящее только от e и не зависящее от х, что при всех n > N() неравенствовыполняется для всех х из области Х.

Свойства равномерно сходящихся рядов.

1. Сумма S(x) равномерно сходящегося ряда в области Х, где un(x) (n = 1, 2, 3, …) — непрерывные функции, является непрерывной функцией в области Х.

2. Равномерно сходящийся ряд , где un(x) (n = 1, 2, 3, …) -непрерывные функции, можно почленно интегрировать, т.е. справедливо равенство

. (26)

,

составленный из функций, имеющих непрерывные производные , сходится в области C и его сумма равна S(x), а ряд из производныхсходится в этой области равномерно, то производная суммы рядаравна сумме ряда из производных:

. (27)

Определение. Частными (частичными) суммами функционального ряда называются функции

Определение. Функциональный ряд называется сходящимся в точке (х=х0), если в этой точке сходится последовательность его частных сумм. Предел последовательностиназывается суммой рядав точке х0.

Определение. Совокупность всех значений х, для которых сходится ряд называется областью сходимости ряда.

Определение. Ряд называется равномерно сходящимся на отрезке [a,b], если равномерно сходится на этом отрезке последовательность частных сумм этого ряда.

Теорема. (Критерий Коши равномерной сходимости ряда)

Для равномерной сходимости ряда необходимо и достаточно, чтобы для любого числа e>0 существовал такой номер N(e), что при n>N и любом целом p>0 неравенство

выполнялось бы для всех х на отрезке [a,b].

16. Признак Вейерштрасса равномерной сходимости.

Если числовой ряд с неотрицательными членами сходится и для членов функционального рядапри всехи всехсправедливы оценки

,

то ряд сходится абсолютно и равномерно в области

Говорят в этом случае, что числовой ряд «мажорирует» исходный функциональный ряд, а сам числовой ряд называют мажорантным.

Существует простой признак для проверки равномерной сходимости(принак Вейерштрасса)

Можно рассматривать и при этом сохраняется терминология числовых рядов, связанная с абсолютной и условной сходимостью.

Как и в рядах, абсолютная сходимость сильнее сходимости: из абсолютной сходимости вытекает сходимость.

, , — сходится. Тогда равномерно сходится на .

Применим критерий Коши:

Сопоставляя с предыдущим неравенством, которое верно ,

. Тогда, по критерию Коши, ряд равномерно сходится.

17. Свойства равномерно сходящихся функциональных рядов. Теорема о непрерывности суммы равномерно сходящегося ряда из непрерывных функций. Теорема о почленном интегрировании и дифференцировании ряда (без доказательства).

Общие свойства функциональных рядов

О п р е д е л е н и е. Ряды

, (24)

члены которых являются функциями от х, называются функциональными. Предполагается, что все функции un(x) определены и непрерывны в одном и том же интервале, конечном или бесконечном.

Ряд (24) может сходиться для одних значений х и расходиться для других. Значение х = х0, при котором получающийся из (24) числовой ряд

(25)

сходится, называется точкой сходимости ряда (24). Совокупность всех точек сходимости ряда называется областью сходимости ряда. Областью сходимости функционального ряда обычно бывает какой-нибудь промежуток оси Ох. Говорят, что ряд (24) сходится в этой области.

Сумму n первых членов ряда (n-ю частичную сумму) обозначают через Sn(x) , а остаток ряда обозначают через Rn(x). Функциональный ряд сходится при некотором значении х, если существует конечный предел

и .

S(x) – сумма функционального ряда. Ее можно представить в виде S(x) = Sn(x) + Rn(x). Каждому значению х из области сходимости Х соответствует определенное значение S(x).

Равномерная сходимость ряда

О п р е д е л е н и е. Функциональный ряд (24) называется равномерно сходящимся в некоторой области Х, если для любого сколь угодно малого числа > 0 можно указать такое целое число N() > 0, зависящее только от e и не зависящее от х, что при всех n > N() неравенство выполняется для всех х из области Х.

Достаточный признак равномерной сходимости функционального ряда – признак Вейерштрасса

Если члены функционального ряда (24) u1(x), u2(x),u3(x),…, un(x)… в некоторой области Х по абсолютной величине не превосходят соответствующих членов некоторого сходящегося числового ряда с положительными членами , то функциональный ряд

в этой области сходится равномерно.

Это значит, что во всех точках области Х должно выполняться неравенство , (n = 1, 2, 3, …). Рядназывается мажорантным (усиливающим) по отношению к ряду (24).

Свойства равномерно сходящихся функциональных рядов

1. Сумма S(x) равномерно сходящегося ряда в областиХ, где un(x) (n = 1, 2, 3, …) — непрерывные функции, является непрерывной функцией в области Х.

2. Равномерно сходящийся ряд , гдеun(x) (n = 1, 2, 3, …) -непрерывные функции, можно почленно интегрировать, т.е. справедливо равенство

. (26)

,

составленный из функций, имеющих непрерывные производные , сходится в области C и его сумма равнаS(x), а ряд из производных сходится в этой области равномерно, то производная суммы рядаравна сумме ряда из производных:

. (27)

Коротко эту теорему формулируют так:

Если ряд, составленный из производных сходящегося ряда (27), сходится равномерно, то исходный ряд (24) можно почленно дифференцировать.

Отметим: здесь не предполагаются равномерная сходимость исходного ряда, а также дифференцируемость его суммы; они следуют из условий теоремы. Однако проверка равномерной сходимости ряда является обязательной; при невыполнении этого теорема может потерять смысл (т.е. оказаться неприменимой).

2.4. Нахождение суммы функционального ряда

функционального ряда и области его сходимости к этой сумме.

Нахождение суммы ряда почленным интегрированием.

  1. Пусть дан ряд вида . По признаку Коши или

признаку Даламбера область сходимости определяется неравенством . Если , то ряд — расходящийся.

Если , то ряд сходится условно (по признаку Лейбница). Следовательно, область сходимости находится из неравенства . Затем делаем замену в исходном ряде; получаем степенной ряд с областью сходимости . Используем формулу для вычисления суммы членов бесконечно убывающей геометрической прогрессии со знаменателем

и очевидное равенство

Учитывая, что степенной ряд можно почленно интегрировать по любому отрезку , целиком принадлежащему интервалу сходимости, и используя формулу (13), получаем

Заметим, что так как ряд (12) сходится в граничной точке t=-1, то сумма ряда непрерывна в этой точке (справа) и . Далее вычисляем интеграл (с переменным верхним пределом), заменяем t на и получаем ответ.

  1. Если дан ряд вида , то следует либо

применить теорему о почленном интегрировании степенного ряда дважды, либо разложить дробь на элементарные и вычислить сумму каждого ряда почленным интегрированием.

Пример. Найти сумму ряда и указать область

его сходимости к этой сумме.

Решение. Данный ряд степенной. Находим его интервал сходимости. По признаку Коши имеем

. Из неравенства находим . Исследуем поведение ряда в граничных точках. При — расходящийся гармонический ряд. При — условно сходящийся ряд по признаку Лейбница. Следовательно, данный ряд сходится при . Для нахождения суммы ряда сделаем замену . Получим геометрический ряд , сходящийся при . Используя равенство (13) и почленное интегрирование степенного ряда, получаем:

Замечание. Степенной ряд (10) сходится абсолютно и равномерно на всяком отрезке, лежащем внутри его интервала сходимости; ряд (10) можно почленно интегрировать и дифференцировать внутри его интервала сходимости , т.е. если то для имеем и

Задание 17. Найти сумму ряда и указать область сходимости к этой сумме.

Найдем сумму каждого из этих рядов в их области сходимости. Сначала рассмотрим ряд

Используем формулу для вычисления суммы членов бесконечно убывающей геометрической прогрессии

, где , , и равенство (13).Учитывая, что степенной ряд можно почленно интегрировать на любом отрезке , целиком принадлежащем интервалу сходимости, получаем первую сумму:

Т.к. ряд сходится в граничной точке х=-1, то его сумма непрерывна в этой точке: .Значит,

Аналогично находим вторую сумму с учетом (14):

Таким образом, сумма исходного ряда

Решение. Находим область сходимости функционального ряда, применяя признак Даламбера

Область сходимости определяется неравенством , или . Решая его, получаем или . При имеем — расходящийся ряд (т.к. ~ ). Следовательно, ряд сходится при . Сделаем замену . Получим ряд с областью сходимости . Используя формулу (12): равенство (13): и почленное интегрирование на любом отрезке, принадлежащем области сходимости, получаем

Заменяя t на , получаем сумму

Нахождение суммы ряда почленным дифференцированием.

I. Пусть дан ряд вида .

Сначала определяем область сходимости ряда, например, по признаку Коши. Получаем неравенство . Если , то ряд расходится, т.к. не выполнено необходимое

условие сходимости . Следовательно, область

сходимости определяется неравенством . Затем делаем замену и записываем ряд в виде суммы двух рядов . Для нахождения сумм этих рядов используем формулу суммы членов бесконечно убывающей геометрической прогрессии и очевидное равенство

Учитывая, что степенной ряд можно почленно дифференцировать в любой точке интервала сходимости, и используя равенство

Далее вычисляем производную, делаем замену

и записываем ответ.

II. Если дан ряд вида , то вычисляем сумму трех рядов , и , причем при вычислении суммы ряда применяем теорему о почленном дифференцировании степенного ряда дважды.

Задание 18. Найти сумму ряда и указать область

сходимости ряда к этой сумме.

Решение. а). Находим область сходимости данного ряда по признаку Даламбера

Отсюда . В граничных точках ряд расходится, т.к. не выполнено необходимое условие сходимости. Итак, ряд сходится (и притом абсолютно) в интервале (-1;1).

б). Делаем в исходном ряде замену и записываем в виде суммы двух рядов

Для нахождения S(t) достаточно найти суммы рядов

Учитывая, что степенной ряд можно почленно

дифференцировать в любой точке интервала сходимости,

в) Заменяя на , получаем

Решение. По признаку Коши интервал сходимости

степенного ряда определяется неравенством , т.е. ряд сходится в интервале (-1;1). Для нахождения суммы ряда достаточно представить ряд в виде суммы трех рядов и найти суммы рядов:

где применили один раз почленное дифференцирование по x;

Т.к. выше найденная на предыдущем шаге сумма ряда

, то еще раз применив почленное дифференцирование по x к ряду; , получаем .Таким образом, сумма исходного ряда равна

Как найти сумму ряда?

Рассмотрим небольшую задачу, которая обычно предлагается в самом начале практической работы по теме. И такая привилегия не случайна. Для решения типового примера на нахождение суммы ряда не требуется тяжёлый багаж признаков сравнения, признаков Даламбера, Коши и т.д. – достаточно самых минимальных знаний о числовых рядах. Необходимо понимать, что такое ряд , уметь расписывать его подробно и не округлять глаза после словосочетаний «ряд сходится», «ряд расходится», «сумма ряда». Поэтому, если ваше настроение совсем на нуле, пожалуйста, уделите 5-10 минут статье Ряды для чайников (буквально первые 2-3 страницы), а потом возвращайтесь сюда и смело начинайте решать примеры!

Следует отметить, что в большинстве случаев найти сумму ряда непросто, и этот вопрос обычно решается через функциональные ряды (доживём-доживём:)). Так, например, сумма популярного артиста выводится через ряды Фурье. В этой связи на практике почти всегда требуется установить сам факт сходимости, но не найти конкретное число (многие, думаю, уже успели это заметить). Однако среди великого множества числовых рядов есть немногочисленные представители, которые позволяют без особых проблем прикоснуться к святая святых даже полному чайнику. И на вводном уроке я приводил пример бесконечно убывающей геометрической прогрессии , сумма которой легко рассчитывается по известной школьной формуле.

В данной статье мы продолжим рассматривать похожие примеры, кроме того, узнаем строгое определение суммы и попутно познакомимся с некоторыми свойствами рядов. Разомнёмся… да прямо на прогрессиях и разомнёмся:

Найти сумму ряда

Решение: представим наш ряд в виде суммы двух рядов:

Почему в данном случае так можно сделать? Выполненные действия основаны на двух простейших утверждениях:

1) Если сходятся ряды , то будут сходиться и ряды, составленные из сумм или разностей соответствующих членов: . При этом существенно то обстоятельство, что речь идёт о сходящихся рядах. В нашём примере мы заранее знаем, что обе геометрические прогрессии сойдутся, а значит, без всяких сомнений раскладываем исходный ряд в два ряда.

2) Второе свойство ещё очевиднее. Константу можно вынести за пределы ряда: , и это не повлияет на его сходимость или расходимость и итоговую сумму. Зачем выносить константу? Да просто чтобы она «не мешалась под ногами». Но иногда бывает выгодно этого и не делать

Чистовое оформление примера выглядит примерно так:

Дважды используем формулу для нахождения суммы бесконечно убывающей геометрической прогрессии: , где – первый член прогрессии, – основание прогрессии.

Ответ: сумма ряда

Начало решения можно оформить несколько в другом стиле – расписать ряд напрямую и перегруппировать его члены:

Дальше по накатанной.

Найти сумму ряда

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Каких-либо особых изысков здесь нет, но однажды мне попался необычный ряд , который может застать врасплох неискушенного человека. Это… тоже бесконечно убывающая геометрическая прогрессия! Действительно, , и сумма рассчитывается буквально за пару мгновений: .

А сейчас живительный глоток математического анализа, необходимый для решения дальнейших задач:

Что такое сумма ряда?

Строгое определение сходимости/расходимости и суммы ряда в теории даётся через так называемые частичные суммы ряда. Частичные – значит неполные. Распишем частичные суммы числового ряда :

И особую роль играет частичная сумма «эн» членов ряда:

Если предел частичных сумм числового ряда равен конечному числу: , то такой ряд называют сходящимся, а само число – суммой ряда. Если же предел бесконечен либо его не существует, то ряд называют расходящимся.

Вернёмся к демонстрационному ряду и распишем его частичные суммы:

Предел частичных сумм – есть в точности бесконечно убывающая геометрическая прогрессия, сумма которой равна: . Похожий предел мы рассматривали на уроке о числовых последовательностях. Собственно, и сама формула – это прямое следствие вышеизложенных теоретических выкладок (см. 2-ой том матана).

Таким образом, прорисовывается общий алгоритм решения нашей задачи: необходимо составить энную частичную сумму ряда и найти предел . Посмотрим, как это осуществляется на практике:

Вычислить сумму ряда

Решение: на первом шаге нужно разложить общий член ряда в сумму дробей. Используем метод неопределённых коэффициентов:

Сразу же полезно провести обратное действие, выполнив тем самым проверку:

Получен общий член ряда в исходном виде, следовательно, разложение в сумму дробей проведено успешно.

Теперь составим частичную сумму ряда . Вообще это делается устно, но один раз я максимально подробно распишу, что откуда взялось:

Как записать совершенно понятно, но чему равен предыдущий член ? В общий член ряда ВМЕСТО «эн» подставляем :

Частичная сумма ряда

Почти все слагаемые частичной суммы благополучно взаимоуничтожаются:

Прямо такие пометки и делаем карандашом в тетради. Чертовски удобно.

Осталось вычислить элементарный предел и узнать сумму ряда:

Ответ:

Аналогичный ряд для самостоятельного решения:

Вычислить сумму ряда

Примерный образец чистового оформления решения в конце урока.

Очевидно, что нахождение суммы ряда – это само по себе доказательство его сходимости (помимо признаков сравнения, Даламбера, Коши и др.), о чём, в частности, намекает формулировка следующего задания:

Найти сумму ряда или установить его расходимость

По внешнему виду общего члена можно сразу сказать, как ведёт себя этот товарищ. Без комплексов. С помощью предельного признака сравнения легко выяснить (причём даже устно), что данный ряд будет сходиться вместе с рядом . Но перед нами редкий случай, когда без особых хлопот рассчитывается ещё и сумма.

Решение: разложим знаменатель дроби в произведение. Для этого нужно решить квадратное уравнение:

Множители лучше расположить в порядке возрастания: .

Выполним промежуточную проверку:

Таким образом, общий член ряда:

Коэффициенты получились целые и это радует:

На всякий случай выполним ещё одну промежуточную проверку:

Поэтапные проверки – королевы зачётов 😉

При нахождении частичной суммы целесообразно делать пометки карандашом

Составим энную частичную сумму и уничтожим всё, что можно уничтожить:

Как видите, в этот раз противоположные числа не расположены рядышком. Поэтому на практике всегда лучше перестраховаться и записать побольше членов ряда – чтобы наверняка понять, какие слагаемые исчезнут, а какие – нет. По той же причине крайне желательно выполнять пометки карандашом.

Опыт показывает, что чаще всего студенты испытывают затруднения с хвостом суммы. В этой связи ещё раз повторим принцип, по которому записаны члены . Отчего ж не повторить?

В общий член ряда :
– ВМЕСТО «эн» подставляем : ;
– ВМЕСТО «эн» подставляем : ;
– ВМЕСТО «эн» подставляем : .

На завершающем этапе находим сумму ряда:

Ответ:

Изящный ряд для самостоятельного решения:

Найти сумму ряда или установить его расходимость

Решение и ответ в конце урока.

Вероятно, на этом рубеже у многих посетителей возникла уверенность в своих навыках и желание раствориться на просторах Интернета. Рекомендую немного задержаться, поскольку ниже по течению среди, казалось бы, такого однообразия приветливо моргают глазами большие крокодилы.

Усложняем задание и набиваем руку:

Вычислить сумму ряда

Решение: со знаменателем тут никаких проблем:

Множители, как я уже отмечал, целесообразно расположить в порядке возрастания.

Здесь на последних шагах проведено почленное сложение двух уравнений системы.

Что и требовалось проверить.

Запишем частичную сумму «эн» членов ряда, при этом обращаем внимание на тот факт, что «счётчик» ряда «начинает работать» с номера . Как и в предыдущих примерах, надёжнее растянуть кобру на приличную длину:

Члены частичной суммы удобно располагать друг под другом

Однако если мы запишем в одну-две строчки, то всё равно будет довольно трудно сориентироваться в слагаемых (их таки 3 в каждом члене). И здесь нам на помощь придёт… геометрия. Заставим плясать змею под свою дудочку:

Да, прямо так и пишем в тетради один член под другим и прямо так их вычёркиваем. Кстати, собственное изобретение. Как понимаете, не от самого лёгкого задания в этой жизни =)

В результате зачистки получаем:

И, наконец, сумма ряда:

Ответ:

Вычислить сумму ряда

Это пример для самостоятельного решения.

Рассматриваемая задача, конечно, не радует нас разнообразием – на практике встречается либо бесконечно убывающая геометрическая прогрессия, либо ряд с дробно-рациональным общим членом и разложимым многочленом в знаменателе (к слову, далеко не каждый такой многочлен даёт возможность найти сумму ряда). Но, тем не менее, иногда попадаются необычные экземпляры, и по сложившейся доброй традиции я завершаю урок какой-нибудь любопытной задачей:

Вычислить сумму ряда, если она существует

Решение: формулировка уже интригует. Интересен тот факт, что все члены данного ряда отрицательны. Почему? На интервале логарифм меньше нуля, а за счёт аргумента при любом натуральном «эн» (начиная с ) мы каждый раз и попадаем в этот интервал.

Таким образом, если ряд сходится, то будет отрицательна и его сумма. Только вот есть мааааленькая проблемка – найти это значение, если оно существует =)

Алгоритм такой же, главное, догадаться, с какой стороны подступиться к решению. Предыдущий опыт подсказывает, что нужно попытаться представить общий член ряда в виде суммы двух или бОльшего количества слагаемых. Из этих соображений преобразуем выражение в скобках и используем свойства логарифма:

Слагаемые частичной суммы располагаются в геометрически правильном порядке

Ну что же, выглядит вполне перспективно, давайте разберёмся с частичной суммой ряда:

В целях устранения неопределённости вновь используем свойство логарифма:

Получено конечное число, а значит, ряд сходится. Как и ожидалось, сумма получилась отрицательной.

Ответ:

Поздравляю со знаменательным событием! Коль скоро вы читаете эти строки, то сегодня на вашу долю выпал редкий и счастливый случай – когда в частичной сумме ряда удалось массово ликвидировать слагаемые. Удалось же? =)

Не каждый день бывает! Но то ли ещё будет 😉

Решения и ответы:

Пример 2: Решение:

Дважды используем формулу для нахождения суммы бесконечно убывающей геометрической прогрессии: .
Для первого ряда: , для второго ряда: .

Ответ: сумма ряда

Пример 4: Решение: Методом неопределенных коэффициентов разложим общий член ряда в сумму дробей:

Таким образом:

Найдём частичную сумму ряда:

Вычислим сумму ряда:

Ответ:

Пример 6: Решение: разложим знаменатель общего члена в произведение и методом неопределённых коэффициентов получим сумму дробей:

Таким образом:
Составим частичную сумму и проведём упрощения:

Вычислим сумму ряда:

Ответ:

Пример 8: Решение: представим общий член ряда в виде:

Методом неопределённых коэффициентов разложим его в сумму дробей:

Таким образом:
Запишем частичную сумму:

Вычислим сумму ряда:

Ответ:

Автор: Емелин Александр

Блог Емелина Александра

(Переход на главную страницу)

Zaochnik.com – профессиональная помощь студентам,

cкидкa 15% на первый зaкaз, при оформлении введите прoмoкoд: 5530-hihi5

© Copyright mathprofi.ru, Александр Емелин, 2010-2024. Копирование материалов сайта запрещено

Как найти сумму функционального ряда x^n/[n(n+1)]?

Зарегистрирован:
22 сен 2010, 13:04
Сообщений: 3
Cпасибо сказано: 1
Спасибо получено:
0 раз в 0 сообщении
Очков репутации: 1

Добавить очки репутацииУменьшить очки репутации

Помогите с заданием по функциональным рядам, ПОЖАЛУЙСТА!

Найти сумму функционального ряда [math]\sum_^<\infty>\frac[/math] ?

Дайте ссылок, где рассматриваются похожие примеры, а не одна теория.

Заголовок сообщения: Re: Как найти сумму функционального ряда x^n/[n(n+1)]?
Добавлено: 23 сен 2010, 12:58

Начинающий

Зарегистрирован:
19 апр 2010, 16:11
Сообщений: 16
Откуда: Сиэтл, США
Cпасибо сказано: 5
Спасибо получено:
17 раз в 11 сообщениях
Очков репутации: 73

Добавить очки репутацииУменьшить очки репутации

Сначала исследуйте ряд на сходимость. Воспользовавшись признаком Даламбера, получите, что ряд сходится при [math]x\in(-1;1)[/math] . Теперь исследуйте сходимость ряда в предельных точках интервала сходимости, т.е. при [math]x=-1[/math] и [math]x=1[/math] .

В точке [math]x=-1[/math] получите знакочередующийся ряд [math]\sum\limits_^<\infty>\frac[/math] , который сходится согласно признаку Лейбница.

В точке [math]x=1[/math] получите ряд [math]\sum\limits_^<\infty>\frac[/math] , который сходится согласно, например, интегральному признаку Коши.

То есть функциональный ряд [math]\sum\limits_^<\infty>\frac[/math] сходится при [math]x\in[-1;1][/math] .

Чтобы вычислить сумму ряда, преобразуйте его следующим образом:

Далее один раз продифференцируйте по [math]x[/math] общие члены рядов и получите ряды геометрической прогрессии, найдите их суммы, проинтегрируйте их в пределах от [math]0[/math] до [math]x[/math] , таким образом, и получите сумму исходного ряда.

Должны получить [math]\sum\limits_^\infty\frac=\frac\ln|x-1|+1,~~x\in[-1;1].[/math]

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *