Как найти силу тяги зная
Перейти к содержимому

Как найти силу тяги зная

  • автор:

Как найти силу тяги

Сила тяги — сила, прикладываемая к телу для поддержания его в постоянном движении.

Действие силы тяги

Множество сил, действующих на движущийся объект, для упрощения вычислений делят на две группы: силу тяги и силы сопротивления.

Её прекращение

Когда действие силы тяги прекращается, движущееся тело замедляется и постепенно останавливается, так как на него воздействуют силы, мешающие продолжать двигаться, например, трение.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

1 закон Ньютона о действии

Согласно этому закону в формулировке самого Ньютона, любое тело остается в покое или равномерно движется по прямой, пока на него не воздействуют силы, заставляющие его изменить это состояние.

В современной физике в формулировку внесены уточнения:

  • закон применим только в системах отсчета, называемых инерциальными;
  • тело может вращаться на месте, не находясь под воздействием внешних сил, поэтому вместо термина «тело» следует использовать термин «материальная точка».

Чтобы переместить неподвижный предмет, на него должна воздействовать некая сила. Чтобы изменить скорость движения предмета, также необходимо воздействие силы, замедляющей его или ускоряющей. Так как предметы обладают разной массой и соответственно разной инертностью, силы, достаточные для эффективного воздействия, тоже будут различаться.

Состояние ускорения после воздействия силы тяги

Когда движение равномерное, сила тяги и сила трения совершают одинаковую работу, уравновешивая друг друга. Воздействие силы на тело в направлении движения придает ему ускорение. Если направить ту же силу в противоположном направлении, она замедлит движение тела, что можно назвать отрицательным ускорением.

Формулы для определения силы тяги

Согласно второму закону Ньютона, сумма сил, воздействующих на движущееся тело, равна массе \(m\) , умноженной на ускорение \(a\) . Универсальной формулы, подходящей для любого сочетания сил, не существует. Чаще всего силу тяги находят с помощью общей формулы \( F_т-\;F_=m\;\times\;a\) , где \(F_т\) — сила тяги, \(F_\) — силы сопротивления.
При решении конкретной задачи силы, воздействующие на тело, схематически изображают в виде векторов. На схеме:

Сила тяги

  • сила тяжести mg;
  • сила реакции опоры \(N\) ;
  • сила трения \( F_\) ;
  • сила тяги \(F\) .

При нахождении тела на горизонтальной поверхности сила тяжести и сила реакции опоры уравновесят друг друга. Но если транспортное средство движется в гору или под гору, придется учесть влияние уклона. Тогда формула может выглядеть так: \(F_т-\;F_с-\;mg\;\times\;\sin\alpha=m\;\times\;a.\)

Работа A, которую должна совершить сила тяги, сдвигая тело, связана с ней соотношением \(A\;=\;F\;\times\;s\) . \(s\) здесь — расстояние, на которое тело переместилось.

Какое условие должно соблюдаться

Сила тяги всегда должна быть больше противодействующих ей сил.

Формула через мощность

Полезную механическую мощность \(N\) можно вычислить по формуле \(N=F_т\;\times\;v\) , где \(v\) — скорость. Для определения силы тяги нужно разделить мощность на скорость: \(F_т\;=\;\frac N v.\)

Измерение и обозначение силы тяги

Силу тяги обозначают \(F_т\) или \(F\) . Единица измерения — ньютон ( \(Н\) ).
Для решения задач недостаточно измерить усилие, приложенное к объекту, и выразить его конкретным числом, так как сила обладает еще и направлением. Чтобы подчеркнуть, что сила — векторная величина, к буквенному обозначению добавляют стрелку.

Как определить силу тяги двигателя. Примеры решения задач

Задача 1

Автомобиль может разгоняться до 216 км/ч. Максимальная мощность двигателя равна 96 кВт. Определите максимальную силу тяги двигателя.

Решение

Переведем киловатты в ватты, а километры в час — в метры в секунду:

\(F_т\;=\;\frac N v = \frac = 1600 Н\)

Задача 2

Троллейбус весом 12 тонн за 5 секунд проезжает по горизонтальной дороге 10 метров. Сила трения равна 2,4 кН. Определите силу тяги, которую развивает двигатель.

Решение

Переведем тонны в килограммы, а килоньютоны в ньютоны:

\(F_т-\;F_=m\;\times\;a\) , следовательно, \(F_т=m\times a\;+\;F_\)

Чтобы определить ускорение а, воспользуемся формулой \(s\;=\;\frac2\)

Подставив численные значения величин, получаем:

Задача 3

Транспорт, весящий 4 тонны, едет в гору. Уклон — 1 метр на каждые 25 метров пути. \(\mu\) — 0,1 от силы тяжести, \(а = 0\) . Определите силу тяги.

Решение

Сила тяги векторы уклон

Сделаем проекции на координатные оси:

Подставим значение \(F_\) в уравнение \(OX\) и определим \(F_т\) :

Найдем синус и косинус \(\alpha\) , подставим их в общую формулу:

Сила тяги

Силой тяги называют силу, прикладываемую к телу для поддержании его в постоянном движении.

Прекращение действия силы тяги приводит к остановке вследствие трения, вязкости окружающей среды и других противодействующих движению сил.

Тело, на которое не действуют силы, движется с постоянной скоростью $v = const$ (первый закон Ньютона). Частным случаем такого движения является состояние покоя ($v = 0$). Движение с постоянной скоростью называют состоянием инерции. Чтобы вывести тело из такого состояния, нужно приложить к нему силу. Скорость тела в этом случае изменится, т.е. оно получит ускорение (либо замедление, которое можно считать отрицательным ускорением).

Величина ускорения обратнопропорциональна массе тела (чем оно массивнее, тем труднее его вывести из состояния инерции) и прямопропорциональна интенсивности приложенной силы. Таким образом:

  • $F$ — сила,
  • $m$ — масса,
  • $a$ — ускорение.

Замечание 1

Эта формула отражает Второй закон Ньютона.

Формулы для расчета

В качестве примера силы тяги, выводящей тело из состояния покоя, можно рассмотреть спортсмена, поднимающего штангу. В исходном состоянии штанга находится в состоянии инерции (остается неподвижной). Когда спортсмен отрывает ее от земли, его мышцы должны сокращаться с такой силой, чтобы она превысила вес штанги, т.е. силу, с которой ее притягивает гравитационное поле Земли. Если штангисту удастся оторвать штангу от пола — значит она переместится вверх на некоторое расстояние, т.е. получит ускорение. Т.е. силой тяги, двигающей данный снаряд, является сила сокращающихся мышц спортсмена. При этом должно соблюдаться условие:

Помощь эксперта по теме работы
Решение задач от ИИ за 2 минуты
Найди решение своей задачи среди 1 000 000 ответов

$F_м$ > $F_т$, т.е. $F_м$ >$ m \cdot g$,

где $F_м$ — сила мышц (в данном случае сила тяги), $F_т$ — сила тяжести (гравитация), $m$ — масса, $g$ — ускорение свободного падения.

Состояние движения по инерции следует отличать от равномерного движения, когда сила тяги уравновешивается противодействующими силами. Например, при движении автомобиля работающий двигатель через систему трансмиссии передает на колеса силу, преодолевающую силы трения внутри механизмов автомобиля, трения колес о поверхность дороги, сопротивления воздуха и т.д. Силу тяги можно в этом случае вычислить зная время разгона $t$ до нужной скорости $v$ и массу автомобиля $m$:

Здесь ускорение выражено как частное от деления скорости на время разгона.

Силу тяги можно также выразить через мощность — способность некоторого источника энергии совершать работу. Чем мощность выше — тем за меньшее время этот источник разовьет силу, способную разогнать тело массой $m$ до требуемой скорости $v$. Работа же прямопропорциональна силе, которая ее совершила:

где $s$ — расстояние, на которое сила переместила данное тело.

Поскольку расстояние можно выразить через скорость и время,

а мощность есть работа, выполняемая в единицу времени

можно составить уравнения:

Вычислить силу тяги автомобиля, движущегося с ускорением $3 м/с^2$, если его масса составляет 1,5 тонны, а сила трения — 10% от силы тяжести.

Рассмотрим силу тяги как сумму двух сил:

  1. разгоняющей автомобиль с заданным ускорением: $F_1 = m \cdot a$, где $m$ — масса, $a$ — ускорение;
  2. преодолевающей силу трения: $F_2 = \mu \cdot m \cdot g$, где $\mu$ — коэффициент силы трения, $g$ — ускорение свободного падения.

Подставив числовые значения в формулу

$F = F_1 + F_2 = m \cdot a + \mu \cdot m \cdot g$

получим, попутно переведя тонны в единицы СИ килограммы,

$F = 1500 \cdot 3 + 0,1 \cdot 9,8 \cdot 1500 = 1500 \cdot (3 + 0,98) = 5970$

Ответ: 5970 ньютонов.

Сила тяги

Понятие «сила тяги» часто встречается в задачах по физике, когда речь идеи о механической мощности или движении транспорта. Вообще говоря, это гипотетическая сила, которая вводится для удобства при решении задач.

Поясним эту мысль. Рассмотрим движение автобуса. Сила тяги (обозначим ее как $<\overline>_t$) в этом случае является силой трения покоя, которая действует на нижние точки колес со стороны поверхности шоссе. Для реализации движения автобуса по дороге колеса транспортного средства вращает двигатель так, чтобы сила трения была направлена в сторону перемещения (рис.1). В этом случае силу тяги определим как силу трения, которая возникает между ведущими колесами и поверхностью, по которой колеса катятся. Если сила трения отсутствует (колесо находится на льду), то автобус не двигается с места, так как колеса проскальзывают. Трение, которое появляется между колесами и поверхностью дороги создает поступательное перемещение.

Так как сила тяги зависит от силы трения, то для увеличения величины $F_t\ $ следует увеличить трение. Трение увеличивается при росте коэффициента трения и (или) с увеличением силы нормального давления, которое зависит от массы тела.

Сила тяги

Возникает вопрос о необходимости введения некоей силы тяги вместо того, чтобы использовать привычную силу трения. При выделении из внешних сил, которые действуют на наш автобус силы тяги и силы сопротивления движению уравнения движения имеют универсальный вид, и, используя силу тяги, просто выражается полезная механическая мощность ($N$):

где $\overline$ — скорость движения тела (у нас автобуса).

Отметим, что у силы тяги нет четко определенной формулы, как, например, у гравитационной силы или силы Архимеда и других сил. Ее часто вычисляют, используя второй закон Ньютона и рассматривая все силы, которые действуют на тело.

Реактивная сила тяги

Уравнения движения тел переменной массы и формулу для вычисления реактивной силы получил первым И.В. Мещерский в 1897 г. Формула реактивной силы является основой для расчета силы тяги ракетных и турборакетных двигателей всех систем.

Пусть ракета перемещается со скоростью $\overline$ относительно Земли. Вместе с ней с такой же скоростью движется часть топлива, которая сгорает в ближайшую секунду. При сгорании продукты горения этой части топлива получают дополнительную скорость $\overline$ относительно ракеты. Относительно Земли они имеют скорость $\overline-\overline$. При этом сама ракета увеличивает скорость. После выброса продукты горения не взаимодействуют с ракетой. Поэтому систему ракета плюс продукты горения топлива рассматривают как систему из двух тел, которые взаимодействуют при горении по законам неупругого удара. Пусть реактивный двигатель ракеты каждую секунду выбрасывает массу $\mu $ продуктов горения топлива. Используя закон сохранения импульса и второй закон Ньютона получают, что модуль реактивной силы тяги двигателя ($R$) ракеты равен:

Формула (2) показывает, что реактивная сила, которая действует на тело переменной массы, пропорциональна массе отделяющихся частиц за единицу времени и скорости движения этих частиц относительно тела.

Примеры задач с решением

Задание. Сила тяги, действующая на тело, находящееся на наклонной плоскости (рис.2) направлена вдоль этой плоскости вверх (рис.2). Какова ее величина, если масса тела равна $m$, угол наклона плоскости $\alpha ,\ $ускорение движения тела $a$? Коэффициент трения тела о плоскость равен $\mu $. Тело движется с постоянной скоростью в гору.

Сила тяги, пример 1

Решение. Запишем второй закон Ньютона для сил, действующих на тело, учтем, что тело движется равномерно:

Запишем проекции уравнения (1.1) на оси X и Y:

Сила трения связана с силой нормального давления как:

Выразим из (1.3) $N$, используем выражение (1.4), получим из (1.2) силу тяги:

Задание. Ракету, массой (в начальный момент времени) равной $M,$ запустили вертикально вверх. Относительная скорость выброса продуктов горения равна $u$, расход горючего составляет $\mu $. Каким будет ускорение ракеты через время $t$ после старта, если сопротивление воздуха не учитывать, поле силы тяжести считать однородным.

Решение. Сделаем рисунок.

Сила тяги, рисунок 2

На ракету (из условий задачи) будут действовать две силы: сила тяжести и реактивная сила тяги. Запишем уравнение движения ракеты:

В проекции на ось Y уравнение (2.1) запишем как:

Реактивная сила тяги может быть найдена как:

Учитывая равенство (2.3) уравнение преобразуем к виду:

Масса ракеты в момент времени $t$ равна:

Подставим (2.5) в (2.4) имеем:

Warning: file_put_contents(./students_count.txt): failed to open stream: Permission denied in /var/www/webmath-q2ws/data/www/webmath.ru/poleznoe/guide_content_banner.php on line 20

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 455 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Остались вопросы?

Здесь вы найдете ответы.

Сила тяги

Справочник

Сила тяги — это показатель силы, которую прикладывают к некоторому телу.

Она служит для обеспечения нахождения данного тела в состоянии равновесия.

Когда сила тяги прекращает свое действие — это может привести к следующим последствиям:

  • остановка, которая связана с силой трения;
  • состояние вязкости окружающей среды;
  • множество других сопутствующих факторов и сил.

Для тела, на которое оказывает свое воздействие сила тяги, характерно постоянное движение. И обозначается следующим значение, а именно: \[(v=\operatorname t)\]

Особым, частным случаем данного движения является состояние покоя.

При котором, скорость равна нулевому значению.

Определение 2

Состояние инерции — характер движения, при котором соблюдается постоянная скорость движения тела.

Чтобы тело поменяло свое состояние, и изменило скорость своего движения, необходимо приложить к нему силу тяги. При данных условиях скорость тела будет изменяться, причиной этого является получаемое ускорение. Также ускорение может быть отрицательным, в таком случае будет наблюдаться замедление скорости.

Показатель величины ускорения по закону физики обратно пропорционален массе тела.

Из состояния инерции труднее всего вывести тело более массивное и тяжелое.

Также величина ускорения прямо пропорциональна значению интенсивности силы, которая оказывает воздействие на тело.

Данное утверждение можно преобразовать и вывести в виде формулы:

\[\mathrm=\mathrm \cdot \mathrm\]

Где: F — сила тяги, m — масса тела, которая оказывает воздействие на тело, a — ускорение.

Данная формула наглядно характеризует второй закон Ньютона.

Основные формулы для расчета силы тяги

Наглядно силу тяги можно рассмотреть на примере спортсмена штангиста.

Именно на данном примере можно подробно понять, как приложенная сила, может вывести тело из состояния равновесия.

Распишем все операции, выполняемые спортсменам поэтапно:

  1. первоначально штанга находится в состоянии инерции, иными словами имеет состояние покоя;
  2. при отрыве от поверхности земли штанги, все мышцы спортсмена имеют способность сокращаться, с силой которая не превышает вес самой штанги (иначе это звучит как: величина силы с которой ее к себе притягивает гравитация Земли);
  3. при отрыве от пола, штанги на определенную высоту, происходит процесс ускорения;

Силой тяги для снаряда, который осуществляет движение будет являться величина силы с которой сокращаются мышцы спортсмена.

Для данного случая, обязательно должно соблюдаться следующее условие:

\[F_>F_ \text <. то есть >F_>m \times g\]

  • \[F_\] — сила, с которой происходит сокращение мышечной массы (сила тяги для данного случая);
  • \[F_\] сила тяжести или гравитационная;
  • m — масса, которая оказывает воздействие на тело;
  • g — показатель ускорение свободного падения.

Характер движения тела по инерции всегда нужно уметь отличать от движения, которое совершается равномерно. Следовательно, в случае, когда сила тяги имеет способность уравновешиваться сторонними силами (противодействующими).

Например:

Автомобиль совершает движение и его двигатель находится в состоянии работы. Работающий двигатель придает силу на колеса, через трансмиссию, проделывая следующие операции:

  • преодолевает силу трения, которая возникает внутри всего механизма;
  • сопротивление воздуха;
  • процесс трения колес о любую поверхность.

Для определения силы тяги, необходимо знать следующие данные:

  • t — время, за которое происходит разгон транспортного средства;
  • \[v\] — необходимая скорость;
  • m — непосредственная масса автомобиля.

Сила определяется по формуле:

\[F=m \times \frac\]

Из формулы видно, что ускорение выражено как: деление скорости на время разгона транспортного средства:

Через мощность можно выразить силу.

Определение 3

Мощность — это совершенная работа, любым источником энергии.

Если высокая мощность, то следует что, время за которое источник развивает силу будет уменьшаться. А именно: способность разогнать тело определенной массы равной m до необходимой величины скорости движения.

Значение совершаемой работы прямо пропорционально силе и вычисляется по формуле:

\[A=F \times s\]

Где: S — расстояние, на которое при помощи силы, перемещается тело;

Расстояние можно определить по формуле, выразив его через скорость тела и время движения:

Затем определяется мощность, которая должна выполнять в единицу времени и выражается следующей формулой:

\[\mathrm=\frac\]

Окончательное уравнение выражает так:

Нет времени решать самому?

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *