Как найти пересечение двух прямых
Перейти к содержимому

Как найти пересечение двух прямых

  • автор:

Пересечение прямых. Точка пересечения двух прямых

Точка пересечения прямых

Если точка M, является точкой пересечения двух прямых, то она должна принадлежать этим прямым, а ее координаты удовлетворять уравнения этих прямых.

Точка пересечения двух прямых на плоскости

  • графический
  • аналитический

Графический метод решения. Используя уравнения, начертить графики прямых и с помощью линейки найти координаты точки пересечения.

Аналитический метод решения. Необходимо объединить уравнения прямых в систему, решение которой, позволит определить точные координаты точки пересечения прямых.

Если система уравнений:

  • имеет единственное решение, то прямые пересекаются;
  • имеет бесконечное множество решений, то прямые совпадают;
  • не имеет решений, то прямые не пересекаются (прямые параллельны между собой)

Точка пересечения прямых

Пример 1. Найти точку пересечения прямых y = 2 x — 1 и y = -3 x + 1 .

Решение: Для вычисления координат точки пересечения прямых, решим систему уравнений:

y = 2 x — 1 y = -3 x + 1

Вычтем из первого уравнения второе

y — y = 2 x — 1 — (-3 x + 1) y = -3 x + 1 => 0 = 5 x — 2 y = -3 x + 1

Из первого уравнения найдем значение x

5 x = 2 y = -3 x + 1 => x = 2 5 = 0.4 y = -3 x + 1

Подставим значение x во второе уравнение и найдем значение y

x = 0.4 y = -3·(0.4) + 1 = -1.2 + 1 = -0.2

Ответ. Точка пересечения двух прямых имеет координаты (0.4, -0.2)

Точка пересечения прямых

Пример 2. Найти точку пересечения прямых y = 2 x — 1 и x = 2 t + 1 y = t .

Решение: Для вычисления координат точки пересечения прямых, решим систему уравнений:

y = 2 x — 1 x = 2 t + 1 y = t

В первое уравнение подставим значения x и y из второго и третьего уравнений.

t = 2·(2 t + 1) — 1 x = 2 t + 1 y = t => t = 4 t + 1 x = 2 t + 1 y = t =>

-3 t = 1 x = 2 t + 1 y = t => t = — 1 3 x = 2 t + 1 y = t

Подставим значение t во второе и третье уравнение

t = — 1 3 x = 2·(- 1 3 ) + 1 = — 2 3 + 1 = 1 3 y = — 1 3

Ответ. Точка пересечения двух прямых имеет координаты ( 1 3 , — 1 3 )

Точка пересечения прямых

Пример 3 Найти точку пересечения прямых 2 x + 3 y = 0 и x — 2 3 = y 4 .

Решение: Для вычисления координат точки пересечения прямых, решим систему уравнений:

2 x + 3 y = 0 x — 2 3 = y 4

Из второго уравнения выразим y через x

2 x + 3 y = 0 y = 4· x — 2 3

Подставим y в первое уравнение

2 x + 3·4· x — 2 3 = 0 y = 4· x — 2 3 => 2 x + 4·( x — 2) = 0 y = 4· x — 2 3 =>

2 x + 4 x — 8 = 0 y = 4· x — 2 3 => 6 x = 8 y = 4· x — 2 3 =>

x = 8 6 = 4 3 y = 4· x — 2 3 => x = 8 6 = 4 3 y = 4· 4/3 — 2 3 = 4· -2/3 3 = — 8 9

Ответ. Точка пересечения двух прямых имеет координаты ( 4 3 , — 8 9 )

Точка пересечения прямых

Пример 4. Найти точку пересечения прямых y = 2 x — 1 и y = 2 x + 1 .

Решение: Обе прямые заданы уравнениями с угловым коэффициентом. Так как k 1 = k 2 = 2, то прямые параллельны. Так как эти прямые не совпадают то точек пересечения нет.

Решим также эту задачу используя систему уравнений:

y = 2 x — 1 y = 2 x + 1

Вычтем из первого уравнения второе

y — y = 2 x — 1 — (2 x + 1) y = -3 x + 1 => 0 = -2 y = -3 x + 1

В первом уравнении получили противоречие (0 ≠ -2), значит система не имеет решений — отсутствуют точки пересечения прямых (прямые параллельны).

Ответ. Прямые не пересекаются (прямые параллельны).

Точка пересечения прямых

Пример 5. Проверить является ли точка N(1, 1) точкой пересечения прямых y = x и y = 3 x — 2 .

Решение: Подставим координаты точки N в уравнения прямых.

Ответ. Так как оба уравнения превратились в тождества, то точка N — точка пересечения этих прямых.

Точка пересечения двух прямых в пространстве

Метод решения. Для определение координат точки пересечения прямых в пространстве, необходимо объединить уравнения прямых в систему, решение которой, позволит определить точные координаты точки пересечения прямых.

Если система уравнений:

  • имеет единственное решение, то прямые пересекаются;
  • имеет бесконечное множество решений, то прямые совпадают;
  • не имеет решений, то прямые не пересекаются (прямые параллельны или скрещиваются между собой)

Пример 6. Найти точку пересечения прямых x — 1 = y — 1 = z — 1 и x — 3 -2 = 2 — y = z .

Решение: Составим систему уравнений

x — 1 = a y — 1 = a z — 1 = a x — 3 -2 = b 2 — y = b z = b => x = a + 1 y = a + 1 z = a + 1 x — 3 -2 = b 2 — y = b z = b =>

Подставим значения x , y , z из 1, 2, 3 уравнений в 4, 5, 6 уравнения

x = a + 1 y = a + 1 z = a + 1 a + 1 — 3 -2 = b 2 — ( a + 1) = b a + 1 = b => x = a + 1 y = a + 1 z = a + 1 a — 2 -2 = b 1 — a = b a + 1 = b

К шестому уравнению добавим пятое уравнение

x = a + 1 y = a + 1 z = a + 1 a — 2 -2 = b 1 — a = b a + 1 + (1 — a ) = b + b => x = a + 1 y = a + 1 z = a + 1 a — 2 -2 = b 1 — a = b b = 1

Подставим значение b в четвертое и пятое уравнения

x = a + 1 y = a + 1 z = a + 1 a — 2 -2 = 1 1 — a = 1 b = 1 => x = a + 1 y = a + 1 z = a + 1 a — 2 = -2 a = 0 b = 1 =>

x = a + 1 y = a + 1 z = a + 1 a = 0 a = 0 b = 1 => x = 0 + 1 = 1 y = 0 + 1 = 1 z = 0 + 1 = 1 a = 0 a = 0 b = 1

Ответ. Прямые пересекаются в точке с координатами (1, 1, 1).

Замечание. Если уравнения прямых заданы параметрически, и в обоих уравнениях параметр задан одной и той же буквой, то при составлении системы в одном из уравнений необходимо заменить букву отвечающую за параметр.

Пример 7. Найти точку пересечения прямых x = 2 t — 3 y = t z = — t + 2 и x = t + 1 y = 3 t — 2 z = 3 .

Решение: Составим систему уравнений заменив во втором уравнении параметр t на a

x = 2 t — 3 y = t z = — t + 2 x = a + 1 y = 3 a — 2 z = 3

Подставим значения x , y , z из 1, 2, 3 уравнений в 4, 5, 6 уравнения

x = 2 t — 3 y = t z = — t + 2 2 t — 3 = a + 1 t = 3 a — 2 — t + 2 = 3 => x = 2 t — 3 y = t z = — t + 2 2 t = a + 4 t = 3 a — 2 t = -1 =>

Подставим значение t из шестого уравнения в остальные уравнения

x = 2·(-1) — 3 y = (-1) z = -(-1) + 2 2·(-1) = a + 4 -1 = 3 a — 2 t = -1 => x = -5 y = -1 z = 3 a = -6 a = 1 3 t = -1

Ответ. Так как -6 ≠ 1 3 , то прямые не пересекаются.

Как вычислить точку пересечения двух прямых

wikiHow работает по принципу вики, а это значит, что многие наши статьи написаны несколькими авторами. При создании этой статьи над ее редактированием и улучшением работали, в том числе анонимно, 13 человек(а).

Количество просмотров этой статьи: 108 374.

В этой статье:

В двумерном пространстве две прямые пересекаются только в одной точке, [1] X Источник информации задаваемой координатами (х,y). Так как обе прямые проходят через точку их пересечения, то координаты (х,y) должны удовлетворять обоим уравнениям, которые описывают эти прямые. Воспользовавшись некоторыми дополнительными навыками, вы сможете находить точки пересечения парабол и других квадратичных кривых.

Метод 1 из 2:

Точка пересечения двух прямых

Step 1 Запишите уравнение каждой.

  • Если уравнения прямых вам не даны, найдите их на основе известной вам информации.
  • Пример. Даны прямые, описываемые уравнениями y = x + 3 и y − 12 = − 2 x . Чтобы во втором уравнении обособить «у», прибавьте к обеим сторонам уравнения число 12: y = 12 − 2 x

Step 2 Приравняйте выражения, расположенные.

  • Пример. Так как y = x + 3 и y = 12 − 2 x , то можно записать такое равенство: x + 3 = 12 − 2 x .

Step 3 Найдите значение переменной.

  • Пример. x + 3 = 12 − 2 x
  • Прибавьте 2 x к каждой стороне уравнения:
  • 3 x + 3 = 12
  • Вычтите 3 из каждой стороны уравнения:
  • 3 x = 9
  • Разделите каждую сторону уравнения на 3:
  • x = 3 .

Step 4 Используйте найденное значение.

  • Пример. x = 3 и y = x + 3
  • y = 3 + 3
  • y = 6

Step 5 Проверьте ответ.

  • Пример: x = 3 и y = 12 − 2 x
  • y = 12 − 2 ( 3 )
  • y = 12 − 6
  • y = 6
  • Мы получили такое же значение «у», поэтому в наших вычислениях ошибок нет.

Step 6 Запишите координаты (х,у).

  • Пример. x = 3 и y = 6
  • Таким образом, две прямые пересекаются в точке с координатами (3,6).

Step 7 Вычисления в особых случаях.

  • Если две прямые параллельны, они не пересекаются. При этом переменная «х» просто сократится, а уравнение превратится в бессмысленное равенство (например, 0 = 1 ). В этом случае в ответе запишите, что прямые не пересекаются или решения нет.
  • Если оба уравнения описывают одну прямую, то точек пересечения будет бесконечное множество. При этом переменная «х» просто сократится, а уравнение превратится в строгое равенство (например, 3 = 3 ). В этом случае в ответе запишите, что две прямые совпадают.

5.5.5. Пересекающиеся прямые в пространстве

Пересекающиеся прямые пространства обязательно лежат в одной плоскости, причём их направляющие векторы неколлинеарны:

Первая мысль – всеми силами навалиться на точку пересечения .

И тут сразу же подумалось, зачем себе отказывать в правильных желаниях?! Давайте навалимся на неё прямо сейчас!

Как найти точку пересечения пространственных прямых?

Задача 156

Найти точку пересечения прямых

Решение: Перепишем уравнения прямых в параметрической форме:

Приём решения стандартен и уже встречался, когда мы вымучивали уравнения общего перпендикуляра скрещивающихся прямых.

Точка пересечения прямых принадлежит прямой , поэтому её координаты удовлетворяют параметрическим уравнениям данной прямой, и им соответствует вполне конкретное значение параметра :

Но эта же точка принадлежит и второй прямой, следовательно, существует значение , такое, что:

Приравниваем соответствующие уравнения и проводим упрощения:

Получена система трёх линейных уравнений с двумя неизвестными, которую опять же решим «школьным» способом. Из 1-го уравнения выразим – подставим в два нижних уравнения:

В результате получилась совместная система, из которой следует, что . Тогда:

Подставим найденное значение параметра в уравнения координат точки:
, и для проверки подставим значение в уравнения:

Ответ:

Теперь рассмотрим особый случай пересечения прямых:

Автор: Aлeксaндр Eмeлин

Нахождение точки пересечения прямых

Как найти точку пересечения двух прямых на плоскости?

Пусть даны две прямые, заданные уравнениями и Найдём точку пересечения этих прямых.

Если наши прямые не параллельны, то они пересекаются в точке, координаты которой должны удовлетворять уравнениям обеих прямых. Поэтому чтобы найти точку пересечения прямых, надо решить систему уравнений

Эта система имеет единственное решение, если Если же то прямые параллельны и не пересекаются.

Пример

Найти точку пересечения прямых и
Решение: Решаем систему уравнений

Подставляем в первое уравнение системы получаем: Отсюда Поэтому

Ответ: прямые пересекаются в точке

Найти точку пересечения прямых онлайн

Калькулятор поможет быстро вычислить точку пересечения двух прямых на плоскости онлайн. Необходимо просто ввести уравнения двух прямых в произвольном виде.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *