Как найти максимальное значение функции на отрезке
Перейти к содержимому

Как найти максимальное значение функции на отрезке

  • автор:

Наименьшее и наибольшее значения функции на отрезке

Как найти наименьшее и наибольшее значения функции на отрезке

На рисунках ниже показано, где функция может достигать наименьшего и наибольшего значения. На левом рисунке наименьшее и наибольшее значения зафиксированы в точках локального минимума и максимума функции. На правом рисунке — на концах отрезка.

Если функция y = f(x) непрерывна на отрезке [a, b] , то она достигает на этом отрезке наименьшего и наибольшего значений. Это, как уже говорилось, может произойти либо в точках экстремума, либо на концах отрезка. Поэтому для нахождения наименьшего и наибольшего значений функции, непрерывной на отрезке [a, b] , нужно вычислить её значения во всех критических точках и на концах отрезка, а затем выбрать из них наименьшее и наибольшее. Кстати, будет полезным открыть в новом окне материал Свойства и графики элементарных функций.

Пусть, например, требуется определить наибольшее значение функции f(x) на отрезке [a, b] . Для этого следует найти все её критические точки, лежащие на [a, b] .

Критической точкой называется точка, в которой функция определена, а её производная либо равна нулю, либо не существует. Затем следует вычислить значения функции в критических точках. И, наконец, следует сравнить между собой по величине значения функции в критических точках и на концах отрезка ( f(a) и f(b) ). Наибольшее из этих чисел и будет наибольшим значением функции на отрезке [a, b] .

Аналогично решаются и задачи на нахождение наименьших значений функции.

Для нахождения критических точек нужно неплохо разбираться в производных и решении несложных алгебраических уравнений. В любом случае будет нужна таблица производных (откроется в новом окне), так как в примерах указано, какая именно табличная производная найдена.

Для самопроверки при расчётах можно воспользоваться онлайн калькулятором производных.

Ищем наименьшее и наибольшее значения функции вместе

Пример 1. Найти наименьшее и наибольшее значения функции на отрезке [-1, 2] .

Решение. Находим производную (первое и второе слагаемые — табличная производная 3, третье — табличная производная 1) данной функции . Приравняем производную нулю () и, решив уравнение, получим две критические точки: и . Для нахождения наименьшего и наибольшего значений функции на заданном отрезке достаточно вычислить её значения на концах отрезка и в точке , так как точка не принадлежит отрезку [-1, 2] . Эти значения функции — следующие: , , . Из этого следует, что наименьшее значение функции (на графике ниже обозначено красным), равное -7, достигается на правом конце отрезка — в точке , а наибольшее (тоже красное на графике), равно 9, — в критической точке .

Если функция непрерывна в некотором промежутке и этот промежуток не является отрезком (а является, например, интервалом; разница между интервалом и отрезком: граничные точки интервала не входят в интервал, а граничные точки отрезка входят в отрезок), то среди значений функции может и не быть наименьшего и наибольшего. Так, например, функция, изображённая на рисунке ниже, непрерывна на ]-∞, +∞[ и не имеет наибольшего значения.

Однако для любого промежутка (закрытого, открытого или бесконечного) справедливо следующее свойство непрерывных функций.

Если функция непрерывна в промежутке и имеет единственный экстремум, то он является наименьшим значением в случае минимума и наибольшим — в случае максимума.

Как наименьшее значение функции, так и её наибольшее значение, могут быть найдены не только в одной точке, принадлежащей заданного интервала, а, как, например, далее — в двух.

Пример 2. Найти наименьшее и наибольшее значения функции на отрезке [-3, 3] .

Решение. Находим производную (первое и второе слагаемые — табличная производная 3, третье — табличная производная 1) данной функции . Привыкаем к однообразным действиям: приравниваем производную нулю () и решение этого уравнения даёт нам три критические точки: , и . Все критические точки принадлежат отрезку [-3, 3] . Для нахождения наименьшего и наибольшего значений функции на заданном отрезке находим её значения на концах отрезка и во всех критических точках. Эти значения следующие:

Видим, что функция достигает наименьшего значения, равного -13, в двух точках и и наибольшего значения, равного 12, также в двух точках и (то есть на концах отрезка).

Нередки случаи, когда уравнение, полученное от приравнивания производной функции нулю, не имеет действительных решений. Тогда наименьшее и наибольшее значения функции можно найти только на концах отрезка. Таков следующий пример.

Пример 3. Найти наименьшее и наибольшее значения функции на отрезке [0, 4] .

Решение. Находим производную (первое слагаемое — табличная производная 2, второе — табличная производная 5) данной функции . Приравниваем производную нулю: . Видим, что это уравнение не имеет действительных корней. Поэтому наименьшее и наибольшее значения функции можем найти только на концах данного отрезка. Находим значения функции на концах отрезка:

Обе точки, следуя условию, годятся, так что функция достигает наименьшего значения, равного 0, в точке и наибольшего значения, равного 6, в точке .

Неплохо было бы взять и случаи, когда производная функции вычисляется не одним махом, как в предыдущих примерах. Это мы сейчас и сделаем, решив пример, где требуется найти производную частного.

Для самопроверки при расчётах можно воспользоваться онлайн калькулятором производных.

Пример 4. Найти наименьшее и наибольшее значения функции на отрезке [-1, 3] .

Приравниваем производную нулю, что даёт нам одну критическую точку: . Она принадлежит отрезку [-1, 3] . Для нахождения наименьшего и наибольшего значений функции на заданном отрезке находим её значения на концах отрезка и в найденной критической точке:

Сравниваем эти значения. Вывод: функция достигает наименьшего значения, равного -5/13, в точке и наибольшего значения, равного 1, в точке .

Найти наименьшее и наибольшее значения функции самостоятельно, а затем посмотреть решение

Пример 5. Найти наименьшее и наибольшее значения функции на отрезке .

Пример 6. Найти наименьшее и наибольшее значения функции на отрезке .

Пример 7. Найти наименьшее и наибольшее значения функции на отрезке .

Продолжаем искать наименьшее и наибольшее значения функции вместе

Есть преподаватели, которые по теме нахождения наименьшего и наибольшего значений функции не дают студентам для решения примеры сложнее только что рассмотренных, то есть таких, в которых функция — многочлен либо дробь, числитель и знаменатель которой — многочлены. Но мы не ограничимся такими примерами, поскольку среди преподавателей бывают любители заставить студентов думать по полной (таблице производных). Поэтому в ход пойдут логарифм и тригонометрическая функция.

Пример 8. Найти наименьшее и наибольшее значения функции на отрезке [1, e] .

Решение. Находим производную данной функции как производную произведения:

Приравниваем производную нулю, что даёт одну критическую точку: . Она принадлежит отрезку [1, e] . Для нахождения наименьшего и наибольшего значений функции на заданном отрезке находим её значения на концах отрезка и в найденной критической точке:

Результат всех действий: функция достигает наименьшего значения, равного 0, в точке и в точке и наибольшего значения, равного e² , в точке .

Для самопроверки при расчётах можно воспользоваться онлайн калькулятором производных.

Пример 9. Найти наименьшее и наибольшее значения функции на отрезке .

Решение. Находим производную (первое слагаемое — табличная производная 2, второе — табличная производная 7) данной функции:

Приравниваем производную нулю:

Единственная критическая точка принадлежит отрезку . Для нахождения наименьшего и наибольшего значений функции на заданном отрезке находим её значения на концах отрезка и в найденной критической точке:

Вывод: функция достигает наименьшего значения, равного , в точке и наибольшего значения, равного , в точке .

В прикладных экстремальных задачах нахождение наименьшего (наибольшего) значений функции, как правило, сводится к нахождению минимума (максимума). Но больший практический интерес имеют не сами минимумы или максимумы, а те значения аргумента, при которых они достигаются. При решении прикладных задач возникает дополнительная трудность — составление функций, описывающих рассматриваемое явление или процесс.

Пример 10. Резервуар ёмкостью 4 , имеющий форму параллелепипеда с квадратным основанием и открытый сверху, нужно вылудить оловом. Каковы должны быть размеры резервуара, чтобы на его покрытие ушло наименьшее количество материала?

Решение. Пусть x — сторона основания, h — высота резервуара, S — площадь его поверхности без крышки, V — его объём. Площадь поверхности резервуара выражается формулой , т.е. является функцией двух переменных . Чтобы выразить S как функцию одной переменной, воспользуемся тем, что , откуда . Подставив найденное выражение h в формулу для S:

Исследуем эту функцию на экстремум. Она определена и дифференцируема всюду в ]0, +∞[ , причём

Приравниваем производную нулю () и находим критическую точку . Кроме того, при производная не существует, но это значение не входит в область определения и поэтому не может быть точкой экстремума. Итак, — единственная критическая точка. Проверим её на наличие экстремума, используя второй достаточный признак. Найдём вторую производную . При вторая производная больше нуля (). Значит, при функция достигает минимума . Поскольку этот минимум — единственный экстремум данной функции, он и является её наименьшим значением. Итак, сторона основания резервуара должна быть равна 2 м, а его высота .

Для самопроверки при расчётах можно воспользоваться онлайн калькулятором производных.

Пример 11. Из пункта A, находящегося на линии железной дороги, в пункт С, отстоящий от неё на расстоянии l, должны переправляться грузы. Стоимость провоза весовой единицы на единицу расстояния по железной дороге равна , а по шоссе она равна . К какой точке М линии железной дороги следует провести шоссе, чтобы транспортировка груза из А в С была наиболее экономичной (участок АВ железной дороги предполагается прямолинейным)?

Пусть , , (см. рисунок ниже).

Тогда , , . Стоимость провоза p единиц груза по шоссе СМ составит , а по железной дороге МА она составит . Общая стоимость провоза груза по пути СМА выражается функцией

Нужно найти наименьшее значение этой функции. Она дифференцируема при всех значениях x, причём

Приравняв производную нулю, получим иррациональное уравнение , решение которого даёт единственную критическую точку (так как точка не входит в область определения функции).

Взяв контрольные точки и слева и справа от критической точки, убедимся, что производная меняет знак с минуса на плюс. Следовательно, при стоимость провоза груза из А и С является наименьшей, если . Если же , т. е. , то шоссе должно пройти по прямой АС (см. рисунок ниже).

Весь блок «Производная»

  • Что такое производная
  • Найти производную: алгоритм и примеры решений
  • Производные произведения и частного функций
  • Производная суммы дробей со степенями и корнями
  • Производные простых тригонометрических функций
  • Производная сложной функции
  • Производная логарифмической функции
  • Дифференциал функции
  • Дифференциал сложной функции, инвариантность формы дифференциала
  • Уравнение касательной и уравнение нормали к графику функции
  • Правило Лопиталя
  • Частные производные
  • Применение производной к исследованию функций
    • Экстремумы функции
    • Асимптоты
    • Возрастание, убывание и монотонность функции
    • Выпуклость и вогнутость графика функции, точки перегиба
    • Полное исследование функций и построение графиков
    • Функции двух и трёх переменных
    • Экстремумы функции двух переменных
    • Условные экстремумы и функция Лагранжа

    Наибольшее и наименьшее значения функции на отрезке

    Миниатюрная и довольно простая задача из разряда тех, которые служат спасательным кругом плавающему студенту. На природе сонное царство середины июля, поэтому самое время устроиться с ноутбуком на пляже. Ранним утром заиграл солнечный зайчик теории, чтобы в скором времени сфокусироваться на практике, которая, несмотря на заявленную лёгкость, содержит осколки стекла в песке. В этой связи рекомендую добросовестно рассмотреть немногочисленные примеры этой странички. Для решения практических заданий необходимо уметь находить производные и понимать материал статьи Интервалы монотонности и экстремумы функции.

    Сначала коротко о главном. На уроке о непрерывности функции я приводил определение непрерывности в точке и непрерывности на интервале. Образцово-показательное поведение функции на отрезке формулируется похожим образом. Функция непрерывна на отрезке если:

    1) она непрерывна на интервале ;
    2) непрерывна в точке справа и в точке слева.

    Во втором пункте речь зашла о так называемой односторонней непрерывности функции в точке. Существует несколько подходов к её определению, но я буду придерживаться начатой ранее линии:

    Функция непрерывна в точке справа, если она определена в данной точке и её правосторонний предел совпадает со значением функции в данной точке: . Она же непрерывна в точке слева, если определена в данной точке и её левосторонний предел равен значению в этой точке:

    Представьте, что зелёные точки – это гвозди, на которых закреплена волшебная резинка:

    Наибольшее и наименьшее значения функции на отрезке

    Мысленно возьмите красную линию в руки. Очевидно, что как бы далеко мы не растягивали график вверх и вниз (вдоль оси ), функция всё равно останется ограниченной – изгородь сверху, изгородь снизу, и наше изделие пасётся в загоне. Таким образом, непрерывная на отрезке функция ограничена на нём. В курсе матанализа этот вроде бы простой факт констатируется и строго доказывается первой теоремой Вейерштрасса. …Многих раздражает, что в математике нудно обосновываются элементарные утверждения, однако в этом есть важный смысл. Предположим, некий житель махрового средневековья вытягивал график в небо за пределы видимости вот это вставляло. До изобретения телескопа ограниченность функции в космосе была вовсе не очевидна! Действительно, откуда вы знаете, что нас ждёт за горизонтом? Ведь когда-то и Земля считалась плоской, поэтому сегодня даже обыденная телепортация требует доказательства =)

    Согласно второй теореме Вейерштрасса, непрерывная на отрезке функция достигает своей точной верхней грани и своей точной нижней грани .

    Число также называют максимальным значением функции на отрезке и обозначают через , а число – минимальным значением функции на отрезке с пометкой .

    Примечание: в теории распространены записи .

    Грубо говоря, наибольшее значение находится там, где самая высокая точка графика, а наименьшее – где самая низкая точка.

    Важно! Как уже заострялось внимание в статье об экстремумах функции, наибольшее значение функции и наименьшее значение функцииНЕ ТО ЖЕ САМОЕ, что максимум функции и минимум функции. Так, в рассматриваемом примере число является минимумом функции, но не минимальным значением.

    Кстати, а что происходит вне отрезка ? Да хоть потоп, в контексте рассматриваемой задачи это нас совершенно не интересует. Задание предполагает лишь нахождение двух чисел и всё!

    Более того, решение чисто аналитическое, следовательно, чертежа делать не надо!

    Алгоритм лежит на поверхности и напрашивается из приведённого рисунка:

    1) Находим значения функции в критических точках, которые принадлежат данному отрезку.

    Ловите ещё одну плюшку: здесь отпадает необходимость проверять достаточное условие экстремума, поскольку, как только что было показано, наличие минимума или максимума ещё не гарантирует, что там минимальное или максимальное значение. Демонстрационная функция достигает максимума и волей судьбы это же число является наибольшим значением функции на отрезке . Но, понятно, такое совпадение имеет место далеко не всегда.

    Итак, на первом шаге быстрее и проще вычислить значения функции в критических точках, принадлежащих отрезку, не заморачиваясь есть в них экстремумы или нет.

    2) Вычисляем значения функции на концах отрезка.

    3) Среди найденных в 1-м и 2-м пунктах значений функции выбираем самое маленькое и самое большое число, записываем ответ.

    Садимся на берег синего моря и бьём пятками по мелководью:

    Найти наибольшее и наименьшее значения функции на отрезке

    Решение:
    1) Вычислим значения функции в критических точках, принадлежащих данному отрезку:

    Полученное квадратное уравнение имеет два действительных корня:
    – критические точки.

    Ещё раз подчёркиваю, что нас не интересует, есть в них максимумы/минимумы или нет.

    Первая критическая точка принадлежит данному отрезку:
    А вот вторая – нет: , поэтому про неё сразу забываем.

    Вычислим значение функции в нужной точке:

    Итоговый результат я выделил жирным цветом, при оформлении задания в тетради его удобно обвести в кружок простым карандашом или пометить как-то по-другому.

    2) Вычислим значения функции на концах отрезка:

    Результаты опять каким-либо образом выделяем.

    3) Дело сделано, среди «жирных» чисел выбираем наибольшее и наименьшее.

    Ответ:

    Критическое значение на поверку оказалось точкой максимума, но об этом нас никто не спрашивал. Впрочем, для саморазвития можете устно подмечать такие факты.

    Найти наибольшее и наименьшее значения функции на отрезке

    Это пример для самостоятельного решения. Примерный образец чистового оформления в конце урока.

    В рассматриваемой задаче очень важно не допускать вычислительных ошибок, так как рецензент немедленно посмотрит, сами догадываетесь куда.

    Другой существенный момент касается пункта № 1.

    Во-первых, критических точек может не оказаться вообще. Это очень хорошо – меньше вычислений. Просто записываем вывод: «критические точки отсутствуют» и переходим ко второму пункту алгоритма.

    Во-вторых, все критические точки (одна, две или бОльшее количество) могут не принадлежать отрезку. Замечательно. Пишем следующее: «критические точки (а) не принадлежат (ит) рассматриваемому отрезку». Находить какие-то значения функции здесь, разумеется, тоже не надо.

    В моей коллекции есть и те и те примеры, но они унылы как бескрайние просторы Сахары. По сути, всё задание сводится к нахождению двух значений функции на концах интервала. Гораздо интереснее снять кепки, солнечные очки и отправиться играть в пляжный футбол:

    Найти наибольшее и наименьшее значения функции на заданном отрезке

    Решение: всё опять начинается дежурной фразой:
    1) Вычислим значения функции в критических точках, принадлежащих данному отрезку:

    Да, критических точек тут и правда целая команда:

    Первые две точки принадлежат нашему отрезку:

    Но третья оказывается вне игры:

    (надеюсь, все сумели сосчитать )

    Вычислим значения функции в подходящих точках:

    Чтобы не заблудиться в трёх соснах, не забываем выделять результаты,

    2) Вычислим значения функции на концах отрезка:

    Среди «жирных» чисел выбираем наибольшее и наименьшее значения. Максимальное значение («пятёрка») достигается сразу в двух точках, и это необходимо указать в завершающей записи:

    Ответ:

    Время от времени критические точки могут совпадать с одним или даже с обоими концами отрезка, и в этом случае укорачивается второй этап решения. Следующий пример для самостоятельного изучения посвящен как раз такой ситуации:

    Найти наибольшее и наименьшее значения функции на заданном отрезке

    Примерный образец решения в конце урока.

    Иногда техническая трудность рассматриваемого задания состоит в замысловатой производной и громоздких вычислениях:

    Найти максимальное и минимальное значения функции на отрезке

    Решение: отрезок, надо сказать, творческий, но пример взят из конкретной контрольной работы и ни в коем случае не придуман.

    1) Вычислим значения функции в критических точках, которые принадлежат данному отрезку:

    Очевидный корень оказывается не в теме: .

    Второй корень принадлежит нашему отрезку:

    Если вам не понятно, почему именно такой корень, обязательно обратитесь к школьному учебнику Алгебра и начала анализа 10-11 класс и повторите, что такое логарифм, ибо плох тот студент, который не мечтает овладеть логарифмами.

    Дальнейшие вычисления задачи я распишу максимально подробно, но без комментариев. Некоторую информацию о логарифмической функции и свойствах логарифма можно почерпнуть в статье Графики и свойства элементарных функций и методичке по школьным формулам.

    Вычислим значение функции во второй критической точке:

    2) Вычислим значения функции на концах отрезка:

    3) «Жирные» результаты получены с экспонентами и логарифмами, что существенно затрудняет их сравнение. По сей причине вооружимся калькулятором либо Экселем и вычислим приближённые значения, не забывая, что :

    Вот теперь всё понятно.

    Ответ:

    Дробно-рациональный экземпляр для самостоятельного решения:

    Найти максимальное и минимальное значения функции на отрезке

    Вычисления в данном случае не менее кропотливы и точно так же потребуют вмешательства калькулятора (если вы, конечно, не вундеркинд). Полное решение и ответ в конце урока.

    Стрелки часов приближаются к 9 утра, и побережье потихоньку заполняется всё бОльшим и бОльшим количеством стройных ног. Если честно, не терпится захлопнуть ноут и похулиганить, но всё-таки мужественно разберу нетривиальную вещь:

    Найти максимальное и минимальное значения функции на отрезке

    Решение:
    1) Найдём критические точки. Предварительно можно раскрыть скобки, но не особо сложнее использовать и правило дифференцирования произведения:

    Обратите внимание, что точка обращает знаменатель производной в ноль, но её следует отнести к критическим значениям, поскольку САМА ФУНКЦИЯ определена в данной точке. На этом случае я подробно останавливался в теоретической части и последнем примере урока Интервалы монотонности. Экстремумы функции.

    Кроме того, данная точка совпала с правым концом отрезка, а значит, в следующем пункте будет меньше расчётов. В следующем, но не сейчас:

    2) Вычислим значения функции на концах отрезка:

    Ответ:

    Раз, два, три, четыре, пять – мне пора верстать.

    Скорее всего, вы прочитали данную статью в ненастную погоду, поэтому желаю всем скорейшего летнего загара без зачётки в кармане! …ну или с дипломом на груди… …ой, что-то я не то сказал =)

    Решения и ответы:

    Пример 2: Решение:
    1) Вычислим значения функции в критических точках, принадлежащих данному отрезку:

    – критические точки.

    2)Вычислим значения функции на концах отрезка:

    Ответ:

    Пример 4: Решение:
    1) Вычислим значения функции в критических точках, принадлежащих данному отрезку:

    – критические точки.

    2) Вычислим значения функции на концах отрезка:
    уже рассчитано в предыдущем пункте.

    Пример 6: Решение:
    1) Вычислим значения функции в критических точках, которые принадлежат данному отрезку:
    – критические точки.

    2) Вычислим значения функции на концах отрезка:

    Ответ:

    Автор: Емелин Александр

    Блог Емелина Александра

    (Переход на главную страницу)

    Zaochnik.com – профессиональная помощь студентам,

    cкидкa 15% на первый зaкaз, при оформлении введите прoмoкoд: 5530-hihi5

    © Copyright mathprofi.ru, Александр Емелин, 2010-2024. Копирование материалов сайта запрещено

    Наибольшее и наименьшее значения функции на отрезке

    Пусть X – некоторое множество, входящее в область определения D ( f ) функции y = f (x) .

    ОПРЕДЕЛЕНИЕ 1. Значение f (x0) функции y = f (x) в точкенаибольшее значение функции на множестве наименьшее значение функции на множественазывают наибольшим значением функции f (x) на множестве X , если для любой точки наибольшее значение функции на множестве наименьшее значение функции на множествевыполнено неравенство

    Наибольшее значение функции f (x) на множестве X часто обозначают

    ОПРЕДЕЛЕНИЕ 2. Значение f (x0) функции y = f (x) в точке наибольшее значение функции на множестве наименьшее значение функции на множественазывают наименьшим значением функции f (x) на множестве X , если для любой точки наибольшее значение функции на множестве наименьшее значение функции на множествевыполнено неравенство

    Наименьшее значение функции f (x) на множестве X часто обозначают

    ОПРЕДЕЛЕНИЕ 3. Наибольшее значение функции на множестве X часто называют максимальным значением функции f (x) на множестве X или максимумом функции f (x) на множестве X . Наименьшее значение функции на множестве X часто называют минимальным значением функции f (x) на множестве X или минимумом функции f (x) на множестве X .

    ПРИМЕР 1. Минимальным значением функции y = x 2 на множестве является число 0 (рис. 1).

    наибольшее значение функции на множестве наименьшее значение функции на множестве

    Максимального значения функция y = x 2 на множестве не имеет.

    ПРИМЕР 2. Максимальным значением функции y = – x 2 на множестве является число 0 (рис. 2).

    наибольшее значение функции на множестве наименьшее значение функции на множестве

    Минимального значения функция y = – x 2 на множестве не имеет.

    ПРИМЕР 3. Функция y = x на множестве не имеет ни максимального, ни минимального значений (рис. 3).

    наибольшее значение функции на множестве наименьшее значение функции на множестве

    ПРИМЕР 4. Функция y = arctg x на множестве не имеет ни максимального, ни минимального значений (рис. 4).

    наибольшее значение функции на множестве наименьшее значение функции на множестве

    Существование наибольшего и наименьшего значений функции на отрезке. Теорема Вейерштрасса

    Как мы видели в примерах 1 — 4 , даже такие хорошо известные функции, как

    не имеют наибольших или наименьших значений на множестве. Однако, если бы в качестве множества X мы взяли произвольный отрезок, то ситуация стала бы принципиально иной, что вытекает из следующей теоремы.

    ТЕОРЕМА ВЕЙЕРШТРАССА. Если функция непрерывна на отрезке, то на этом отрезке существует точка, в которой функция принимает наибольшее значение, а также точка, в которой функция принимает наименьшее значение.

    Доказательство теоремы Вейерштрасса выходит за рамки школьного курса математики и здесь не приводится.

    Примеры решения задач
    y = 2x 3 + 3x 2 – 36x + 30 (1)

    Из формулы (2) получаем, что критическими точками функции (1) являются точки x = – 3 , x = 2, причем только точка x = 2 принадлежит отрезку [–2, 4] . Вычисляя значения функции (1) в критической точке x = 2, а также на концах отрезка x = – 2 и x = 4 , получим:

    ОТВЕТ. Наибольшее значение функции (1) на отрезке [–2, 4] равно 98 , а наименьшее значение функции (1) на отрезке [–2, 4] равно – 14 .

    на отрезке [–1, 27] .

    Решая уравнение y’ = 0 , получим

    Заметим также, что производная (4) функции (3) не существует в точке x = 0 . Следовательно, у функции (3) есть три критические точки: x = 0, и , причем все эти точки лежат на отрезке [–1, 27] . Вычисляя значения функции (3) в критических точках x = 0, и , а также на концах отрезка x = – 1 и x = 27 , получим:

    ОТВЕТ. Наибольшее значение функции (3) на отрезке [–1, 27] равно 99 , а наименьшее значение функции (3) на отрезке [–1, 27] равно – 1 .

    РЕШЕНИЕ. Для того, чтобы найти критические точки функции (5), перепишем правую часть формулы (5), используя определение модуля:

    В точке x = 0 производная функции (5) не существует. Критическими точками являются точки

    Все критические точки принадлежат отрезку [–1, 6] . Вычисляя значения функции (5) в критических точках x = 0, x = 3, x = 5, а также на концах отрезка x = – 1 и x = 6 , получим:

    ОТВЕТ. Наибольшее значение функции (5) на отрезке [–1, 6] равно 2e 6 , а наименьшее значение функции (5) на отрезке [–1, 6] равно – e 3 .

    на отрезке [23, 40] .

    Решая уравнение y’ = 0 , получаем, что функция (6) имеет единственную критическую точку x = 28 , причем эта точка лежит на отрезке [23, 40] . При переходе через точку x = 28 производная функции (7) меняет знак с «+» на «–» , откуда вытекает, что точка x = 28 является точкой максимума функции (6) на множестве . Следовательно, точка x = 28 является точкой максимума функции (6) и на отрезке [23, 40] . Найдем значение функции (6) в точке x = 28 :

    ОТВЕТ. Наибольшее значение функции (6) на отрезке [23, 40] равно 1 .

    Близкие по тематике разделы сайта

    С материалами, связанными с дифференцированием функций и применением производных к исследованию поведения функций, можно также ознакомиться в учебном пособии «Дифференциальное исчисление функций одной переменной»

    Примеры построения графиков функций можно посмотреть в учебных пособиях:

    • «Исследование функций с помощью производных. Построение графиков (часть 1)»
    • «Исследование функций с помощью производных. Построение графиков (часть 2)»

    Справочник по математике для школьников

    • Арифметика
    • Алгебра
    • Тригонометрия
    • Геометрия (планиметрия)
    • Геометрия (стереометрия)
    • Элементы математического анализа
    • Вероятность и статистика

    Наибольшее и наименьшее значение функции

    На практике довольно часто приходится использовать производную для того, чтобы вычислить самое большое и самое маленькое значение функции. Мы выполняем это действие тогда, когда выясняем, как минимизировать издержки, увеличить прибыль, рассчитать оптимальную нагрузку на производство и др., то есть в тех случаях, когда нужно осуществить поиск и определить оптимальное значение какого-либо параметра или количество. Чтобы решить такие задачи верно, надо хорошо понимать, что такое наибольшее и наименьшее значение функции.

    Обычно нами строится выражение этих значений в рамках некоторого интервала x , который может в свою очередь соответствовать всей области определения функции или ее части. Это может быть как отрезок [ a ; b ] , так и открытый интервал ( a ; b ) , ( a ; b ] , [ a ; b ) , бесконечный интервал ( a ; b ) , ( a ; b ] , [ a ; b ) либо бесконечный промежуток — ∞ ; a , ( — ∞ ; a ] , [ a ; + ∞ ) , ( — ∞ ; + ∞ ) .

    В этом материале мы расскажем, как найти наибольшее и наименьшее значение явно заданной функции с одной переменной y=f(x) y = f ( x ), чтобы вам не нужно было искать это самостоятельно онлайн .

    Основные определения

    Начнем, как всегда, с формулировки основных определений: какое значение называют максимальным и минимальным?.

    Наибольшее и наименьшее значение функции на отрезке

    Как найти наибольшее и наименьшее значение непрерывной функции на открытом или бесконечном интервале

    Перед тем как изучить данный способ, советуем вам повторить, как правильно вычислять односторонний предел и предел на бесконечности, а также узнавать основные методы их нахождения. Чтобы найти наибольшее и/или наименьшее значение функции на открытом или бесконечном интервале, выполняем последовательно следующие действия.

    1. Для начала нужно проверить, будет ли заданный интервал являться подмножеством области определения данной функции.
    2. Определим все точки, которые содержатся в нужном интервале и в которых не существует первой производной. Обычно они бывают у функций, где аргумент заключен в знаке модуля, и у степенных функций с дробно рациональным показателем. Если же эти точки отсутствуют, то можно переходить к следующему шагу.
    3. Теперь определим, какие стационарные точки попадут в заданный промежуток. Сначала приравняем производную к 0 , решим уравнение и подберем подходящие корни. Если у нас нет ни одной стационарной точки или они не попадают в заданный интервал, то сразу переходим к дальнейшим действиям. Их определяет вид интервала.
    • Если интервал имеет вид [ a ; b ) , то нам надо вычислить значение функции в точке x = a и односторонний предел lim x → b — 0 f ( x ) .
    • Если интервал имеет вид ( a ; b ] , то нам надо вычислить значение функции в точке x = b и односторонний предел lim x → a + 0 f ( x ) .
    • Если интервал имеет вид ( a ; b ) , то нам надо вычислить односторонние пределы lim x → b — 0 f ( x ) , lim x → a + 0 f ( x ) .
    • Если интервал имеет вид [ a ; + ∞ ) , то надо вычислить значение в точке x = a и предел на плюс бесконечности lim x → + ∞ f ( x ) .
    • Если интервал выглядит как ( — ∞ ; b ] , вычисляем значение в точке x = b и предел на минус бесконечности lim x → — ∞ f ( x ) .
    • Если — ∞ ; b , то считаем односторонний предел lim x → b — 0 f ( x ) и предел на минус бесконечности lim x → — ∞ f ( x )
    • Если же — ∞ ; + ∞ , то считаем пределы на минус и плюс бесконечности lim x → + ∞ f ( x ) , lim x → — ∞ f ( x ) .
    1. В конце нужно сделать вывод на основе полученных значений функции и пределов. Здесь возможно множество вариантов. Так, если односторонний предел равен минус бесконечности или плюс бесконечности, то сразу понятно, что о наименьшем и наибольшем значении функции сказать ничего нельзя. Ниже мы разберем один типичный пример. Подробные описания помогут вам понять, что к чему. При необходимости можно вернуться к рисункам 4 — 8 в первой части материала.

    Условие: дана функция y = 3 e 1 x 2 + x — 6 — 4 . Вычислите ее наибольшее и наименьшее значение в интервалах — ∞ ; — 4 , — ∞ ; — 3 , ( — 3 ; 1 ] , ( — 3 ; 2 ) , [ 1 ; 2 ) , 2 ; + ∞ , [ 4 ; + ∞ ) .

    Решение

    Первым делом находим область определения функции. В знаменателе дроби стоит квадратный (квадратичный) трехчлен, который не должен обращаться в 0 :

    x 2 + x — 6 = 0 D = 1 2 — 4 · 1 · ( — 6 ) = 25 x 1 = — 1 — 5 2 = — 3 x 2 = — 1 + 5 2 = 2 ⇒ D ( y ) : x ∈ ( — ∞ ; — 3 ) ∪ ( — 3 ; 2 ) ∪ ( 2 ; + ∞ )

    Мы получили область определения функции, к которой принадлежат все указанные в условии интервалы.

    Теперь выполним дифференцирование функции и получим:

    y ‘ = 3 e 1 x 2 + x — 6 — 4 ‘ = 3 · e 1 x 2 + x — 6 ‘ = 3 · e 1 x 2 + x — 6 · 1 x 2 + x — 6 ‘ = = 3 · e 1 x 2 + x — 6 · 1 ‘ · x 2 + x — 6 — 1 · x 2 + x — 6 ‘ ( x 2 + x — 6 ) 2 = — 3 · ( 2 x + 1 ) · e 1 x 2 + x — 6 x 2 + x — 6 2

    Следовательно, производные функции существуют на всей области ее определения.

    Перейдем к нахождению стационарных точек. Производная функции обращается в 0 при x = — 1 2 . Это стационарная точка, которая находится в интервалах ( — 3 ; 1 ] и ( — 3 ; 2 ) .

    Вычислим значение функции при x = — 4 для промежутка ( — ∞ ; — 4 ] , а также предел на минус бесконечности:

    y ( — 4 ) = 3 e 1 ( — 4 ) 2 + ( — 4 ) — 6 — 4 = 3 e 1 6 — 4 ≈ — 0 . 456 lim x → — ∞ 3 e 1 x 2 + x — 6 = 3 e 0 — 4 = — 1

    Поскольку 3 e 1 6 — 4 > — 1 , значит, m a x y x ∈ ( — ∞ ; — 4 ] = y ( — 4 ) = 3 e 1 6 — 4 . Это не дает нам возможности однозначно определяться с наименьшим значением функции. Мы можем только сделать вывод, что внизу есть ограничение — 1 , поскольку именно к этому значению функция приближается асимптотически на минус бесконечности.

    Особенностью второго интервала является то, что в нем нет ни одной стационарной точки и ни одной строгой границы. Следовательно, ни наибольшего, ни наименьшего значения функции мы вычислить не сможем. Определив предел на минус бесконечности и при стремлении аргумента к — 3 с левой стороны, мы получим только интервал значений:

    lim x → — 3 — 0 3 e 1 x 2 + x — 6 — 4 = lim x → — 3 — 0 3 e 1 ( x + 3 ) ( x — 3 ) — 4 = 3 e 1 ( — 3 — 0 + 3 ) ( — 3 — 0 — 2 ) — 4 = = 3 e 1 ( + 0 ) — 4 = 3 e + ∞ — 4 = + ∞ lim x → — ∞ 3 e 1 x 2 + x — 6 — 4 = 3 e 0 — 4 = — 1

    Значит, значения функции будут расположены в интервале — 1 ; + ∞

    Чтобы найти наибольшее значение функции в третьем промежутке, определим ее значение в стационарной точке x = — 1 2 , если x = 1 . Также нам надо будет знать односторонний предел для того случая, когда аргумент стремится к — 3 с правой стороны:

    y — 1 2 = 3 e 1 — 1 2 2 + — 1 2 — 6 — 4 = 3 e 4 25 — 4 ≈ — 1 . 444 y ( 1 ) = 3 e 1 1 2 + 1 — 6 — 4 ≈ — 1 . 644 lim x → — 3 + 0 3 e 1 x 2 + x — 6 — 4 = lim x → — 3 + 0 3 e 1 ( x + 3 ) ( x — 2 ) — 4 = 3 e 1 — 3 + 0 + 3 ( — 3 + 0 — 2 ) — 4 = = 3 e 1 ( — 0 ) — 4 = 3 e — ∞ — 4 = 3 · 0 — 4 = — 4

    У нас получилось, что наибольшее значение функция примет в стационарной точке m a x y x ∈ ( 3 ; 1 ] = y — 1 2 = 3 e — 4 25 — 4 . Что касается наименьшего значения, то его мы не можем определить. Все, что нам известно, – это наличие ограничения снизу до — 4 .

    Для интервала ( — 3 ; 2 ) возьмем результаты предыдущего вычисления и еще раз подсчитаем, чему равен односторонний предел при стремлении к 2 с левой стороны:

    y — 1 2 = 3 e 1 — 1 2 2 + — 1 2 — 6 — 4 = 3 e — 4 25 — 4 ≈ — 1 . 444 lim x → — 3 + 0 3 e 1 x 2 + x — 6 — 4 = — 4 lim x → 2 — 0 3 e 1 x 2 + x — 6 — 4 = lim x → — 3 + 0 3 e 1 ( x + 3 ) ( x — 2 ) — 4 = 3 e 1 ( 2 — 0 + 3 ) ( 2 — 0 — 2 ) — 4 = = 3 e 1 — 0 — 4 = 3 e — ∞ — 4 = 3 · 0 — 4 = — 4

    Значит, m a x y x ∈ ( — 3 ; 2 ) = y — 1 2 = 3 e — 4 25 — 4 , а наименьшее значение определить невозможно, и значения функции ограничены снизу числом — 4 .

    Исходя из того, что у нас получилось в двух предыдущих вычислениях, мы можем утверждать, что на интервале [ 1 ; 2 ) наибольшее значение функция примет при x = 1 , а найти наименьшее невозможно.

    На промежутке ( 2 ; + ∞ ) функция не достигнет ни наибольшего, ни наименьшего значения, т.е. она будет принимать значения из промежутка — 1 ; + ∞ .

    lim x → 2 + 0 3 e 1 x 2 + x — 6 — 4 = lim x → — 3 + 0 3 e 1 ( x + 3 ) ( x — 2 ) — 4 = 3 e 1 ( 2 + 0 + 3 ) ( 2 + 0 — 2 ) — 4 = = 3 e 1 ( + 0 ) — 4 = 3 e + ∞ — 4 = + ∞ lim x → + ∞ 3 e 1 x 2 + x — 6 — 4 = 3 e 0 — 4 = — 1

    Вычислив, чему будет равно значение функции при x = 4 , выясним, что m a x y x ∈ [ 4 ; + ∞ ) = y ( 4 ) = 3 e 1 14 — 4 , и заданная функция на плюс бесконечности будет асимптотически приближаться к прямой y = — 1 .

    Сопоставим то, что у нас получилось в каждом вычислении, с графиком заданной функции. На рисунке асимптоты показаны пунктиром.

    Это все, что мы хотели рассказать о нахождении наибольшего и наименьшего значения функции. Те последовательности действий, которые мы привели, помогут сделать необходимые вычисления максимально быстро и просто. Но помните, что зачастую бывает полезно сначала выяснить, на каких промежутках функция будет убывать, а на каких возрастать, после чего можно делать дальнейшие выводы. Так можно более точно определить наибольшее и наименьшее значение функции и обосновать полученные результаты.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *