Как найти время падения тела
Перейти к содержимому

Как найти время падения тела

  • автор:

Свободное падение

Свободное падение представляет собой частный случай равномерно ускоренного движения без начальной скорости. Ускорение этого движения равно ускорению свободного падения, называемого также ускорением силы тяжести. Для этого движения справедливы формулы:

Если:
u — скорость падения тела спустя время t,
g — ускорение свободного падения, 9.81 (м/с²),
h — высота с которой падает тело,
t — время, в течение которого продолжалось падение,
То, свободное падение описывается следующими формулами:

Расстояние, пройденное телом за время падения, зная конечную скорость

Расстояние, пройденное телом за время падения, зная ускорение свободного падения

Скорость тела, в конце падения, зная ускорение свободного падения и время

Скорость тела, в конце падения, зная ускорение свободного падения и высоту

Примечание к статье: Свободное падение

  • Сопротивление воздуха в данных формулах не учитывается.
  • Ускорение свободного падения имеет приведенное значение (9.81 (м/с²)) вблизи земной поверхности. Значение g на других расстояниях от поверхности Земли изменяется!

Copyright © FXYZ.ru, 2007 — 2024.
Мобильная β версия | полная

Формулы свободного падения

Если тело около поверхности Земли движется только под воздействием силы тяжести ($\overline$), говорят, что оно свободно падает. Обычно в задачах, рассматривающих свободное падение тела, сопротивление воздуха не учитывают.

Модуль ускорения свободного падения на расстоянии $h$ от поверхности Земли вычисляется при помощи формулы:

где $\gamma $- гравитационная постоянная; $M$ — масса Земли; $R$ — радиус Земли.

Величина ускорения свободного падения около поверхности Земли ($\ при\ h\ll R$) равна:

Направлено ускорение свободного падения к центру Земли. В задачах о движении тел около поверхности Земли ускорение свободного падения считают постоянной величиной, которую вычисляют с помощью формулы (2), так как в сравнении с радиусом Земли рассматриваемые расстояния много меньше, чем $R$. Обычно, ускорение свободного падения на Земле считают равным $g=9,8\ \frac$.

Кинематические уравнения движения материальной точки в поле тяжести

Свободное падение происходит с постоянным ускорением, что было установлено еще Галилеем, поэтому в кинематике это движение описывают при помощи уравнений:

Первое уравнение системы (3) записано для перемещения тела в поле тяжести Земли ($<\overline>_0$ — смещение тела из начала отсчета в момент начала наблюдения ($t=0c$)). Второе уравнение системы (3) показывает изменение вектора скорости ($<\overline>_0$ — начальная скорость движения тела).

Используя эти уравнения, и зная начальные условия движения тела можно найти скорость и положение тела относительно избранной системы отсчета для любого момента времени.

Тело, брошенное под углом к горизонту

Так, если нам заданы начальные условия в виде и сказано, что тело свободно движется в поле силы тяжести Земли:

это означает, что тело бросили под углом $\alpha $ к горизонту с начальной скоростью $<\overline>_0$ с высоты $h$, оси координат выбраны так, что в момент броска смещения по оси X нет.

Из кинематических уравнений и начальных условий можно получить:

  1. уравнение траектории движения материальной точки: \[y(x)=h_0\ tg\ \alpha -\frac<\left(\frac>\right)>^2\left(5\right).\]
  2. время подъема тела до вершины ее траектории: \[t_p=\frac>\left(6\right)\]
  3. время полета тела: \[t_=\frac^2\alpha +2gh_0>\ >>\left(7\right).\]

При$h=0$\textit< >мы видим, что $t_=2t_p.$

Свободное падение тела из состояния покоя

Начальные условия для тела, которое падает из состояния покоя с высоты $h$ (рис.1), запишем так:

\[\left\< \begin x\left(t=0\ \right)=0, \\ y\left(t=0\ \right)=h, \\ v_x\left(t=0\ \right)=0 \\ v_y\left(t=0\ \right)=0 \end \right.\left(8\right).\]

Кинематические уравнения движения в проекции на ось Y, которую выберем по движению тела (из векторных уравнений (3)) свободно падающего тела без начальной скорости будут выглядеть как:

Формулы свободного падения, рисунок 1

Время падения тела равно:

Скорость тела в момент падения составляет:

Знак минус в формуле (11) означает, что скорость падения направлена против нашей оси Y.

Примеры задач с решением

Задание. Какова глубина шахты, если камень, брошенный в нее, упал на дно спустя 1 секунду после начала движения по ней?

Решение. В этой задаче мы имеем свободное вертикальное падение тела без начальной скорости (рис.2). Систему отсчета свяжем с Землей. Начало отсчета пусть находится на дне шахты (точка 0).

Формулы свободного падения, пример 1

В качестве основы для решения задачи воспользуемся системой уравнений, полученной для подобного движения в теоретической части статьи:

Нам достаточно для решения задачи только первого уравнения системы. В момент падения на дно координата камня будет равна нулю:

Используя уравнения (1.1) и условие (1.2), выразим глубину шахты:

Имея в виду, что $g=9,8\ \frac\ $, проведем вычисления искомой величины:

Ответ. $h=4,9$ м

Задание. Покажите, что тело, брошенное вертикально вверх движется до максимальной высоты подъема столько же времени, сколько оно потом падает с этой высоты до точки бросания.

Решение. Пусть тело бросили вертикально вверх со скоростью $v_0.$ Основой для решения задачи является уравнение для скорости и уравнение перемещения:

Формулы свободного падения, пример 2

Рассмотрим движение тела вверх. В проекции на ось Y выражения (2.1) мы имеем:

В точке максимального подъема тело имеет скорость движения равную нулю, из этого условия и формулы (2.2) получим время подъема тела:$\ $

Высота, на которую тело поднялось равна:

Рассмотрим движение тела вниз с некоторой высоты. Основой будет служить уравнение для перемещения из системы (2.1).Это уравнение для нашего случая, в проекции на ось Y примет вид:

В момент падения координата тела $y=0$:

Высота, на которую поднялось тело, мы нашли в (2.4), подставим ее, выразим время падения тела:

Сравниваем выражения (2.3) и (2.7), получаем:

Время подъема равно времени падения.

Warning: file_put_contents(./students_count.txt): failed to open stream: Permission denied in /var/www/webmath-q2ws/data/www/webmath.ru/poleznoe/guide_content_banner.php on line 20

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 463 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Остались вопросы?

Здесь вы найдете ответы.

Свободное падение тел

Что такое свободное падение? Это падение тел на Землю при отсутствии сопротивления воздуха. Иначе говоря — падение в пустоте. Конечно, отсутствие сопротивления воздуха — это вакуум, который нельзя встретить на Земле в нормальных условиях. Поэтому мы не будем брать силу сопротивления воздуха во внимание, считая ее настолько малой, что ей можно пренебречь.

Ускорение свободного падения

Проводя свои знаменитые опыты на Пизанской башне Галилео Галилей выяснил, что все тела, независимо от их массы, падают на Землю одинаково. То есть, для всех тел ускорение свободного падения одинаково. По легенде, ученый тогда сбрасывал с башни шары разной массы.

Ускорение свободного падения

Ускорение свободного падения — ускорение, с которым все тела падают на Землю.

Ускорение свободного падения приблизительно равно 9 , 81 м с 2 и обозначается буквой g . Иногда, когда точность принципиально не важна, ускорение свободного падения округляют до 10 м с 2 .

Земля — не идеальный шар, и в различных точках земной поверхности, в зависимости от координат и высоты над уровнем моря, значение g варьируется. Так, самое большое ускорение свободного падения — на полюсах ( ≈ 9 , 83 м с 2 ) , а самое малое — на экваторе ( ≈ 9 , 78 м с 2 ) .

Свободное падение тела

Рассмотрим простой пример свободного падения. Пусть некоторое тело падает с высоты h с нулевой начальной скоростью. Допустим мы подняли рояль на высоту h и спокойно отпустили его.

Свободное падение — прямолинейное движение с постоянным ускорением. Направим ось координат от точки начального положения тела к Земле. Применяя формулы кинематики для прямолинейного равноускоренного движения, можно записать.

h = v 0 + g t 2 2 .

Так как начальна скорость равна нулю, перепишем:

Отсюда находится выражение для времени падения тела с высоты h :

Принимая во внимание, что v = g t , найдем скорость тела в момент падения, то есть максимальную скорость:

v = 2 h g · g = 2 h g .

Движение тела, брошенного вертикально вверх

Аналогично можно рассмотреть движение тела, брошенного вертикально вверх с определенной начальной скоростью. Например, мы бросаем вверх мячик.

Пусть ось координат направлена вертикально вверх из точки бросания тела. На сей раз тело движется равнозамедленно, теряя скорость. В наивысшей точки скорость тела равна нулю. Применяя формулы кинематики, можно записать:

Подставив v = 0 , найдем время подъема тела на максимальную высоту:

Время падения совпадает со временем подъема, и тело вернется на Землю через t = 2 v 0 g .

Максимальная высота подъема тела, брошенного вертикально:

Взглянем на рисунок ниже. На нем приведены графики скоростей тел для трех случаев движения с ускорением a = — g . Рассмотрим каждый из них, предварительно уточнив, что в данном примере все числа округлены, а ускорение свободного падения принято равным 10 м с 2 .

Движение тела, брошенного вертикально вверх

Первый график — это падение тела с некоторой высоты без начальной скорости. Время падения t п = 1 с . Из формул и из графика легко получить, что высота, с которой падало тело, равна h = 5 м .

Второй график — движение тела, брошенного вертикально вверх с начальной скоростью v 0 = 10 м с . Максимальная высота подъема h = 5 м . Время подъема и время падения t п = 1 с .

Третий график является продолжением первого. Падающее тело отскакивает от поверхности и его скорость резко меняет знак на противоположный. Дальнейшее движение тела можно рассматривать по второму графику.

Движение тела, брошенного под углом к горизонту

С задачей о свободном падении тела тесно связана задача о движении тела, брошенного под определенным углом к горизонту. Так, движение по параболической траектории можно представить как сумму двух независимых движений относительно вертикальной и горизонтальной осей.

Вдоль оси O Y тело движется равноускоренно с ускорением g , начальная скорость этого движения — v 0 y . Движение вдоль оси O X — равномерное и прямолинейное, с начальной скоростью v 0 x .

Движение тела, брошенного под углом к горизонту

Условия для движения вдоль оси О Х :

x 0 = 0 ; v 0 x = v 0 cos α ; a x = 0 .

Условия для движения вдоль оси O Y :

y 0 = 0 ; v 0 y = v 0 sin α ; a y = — g .

Приведем формулы для движения тела, брошенного под углом к горизонту.

Время полета тела:

t = 2 v 0 sin α g .

Дальность полета тела:

L = v 0 2 sin 2 α g .

Максимальная дальность полета достигается при угле α = 45 ° .

L m a x = v 0 2 g .

Максимальная высота подъема:

h = v 0 2 sin 2 α 2 g .

Отметим, что в реальных условиях движение тела, брошенного под углом к горизонту, может проходить по траектории, отличной от параболической вследствие сопротивления воздуха и ветра. Изучением движения тел, брошенных в пространстве, занимается специальная наука — баллистика.

Конвертер величин

Калькулятор скорости, времени и расстояния при свободном падении

Scheme

График зависимости скорости v (м/с) и расстояния h (м) от времени t (с) падения свободно падающего тела при нулевом сопротивлении воздуха

Этот калькулятор определяет скорость и время свободного вертикального падения тела на поверхность Земли или другой планеты, если известна высота, с которой сброшено тело. Сопротивление воздуха не учитывается. Калькулятор может также рассчитать высоту и время падения, если известна скорость, или скорость и высоту, если известно время.

Пример: Рассчитать скорость при ударе об землю тела, сброшенного с высоты 1000 м.

Ускорение свободного падения
g
или Планета
h
Время падения
t с
v
Поделиться ссылкой на этот калькулятор, включая входные параметры

Для расчета введите ускорение свободного падения g или выберите планету и введите одну из трех величин h, t or v в соответствующие поля, выберите британские или метрические единицы и нажмите на кнопку Рассчитать. Будут рассчитаны две другие единицы.

Внутри спускаемого аппарата Союз ТМА-19М в экспозиции Музея науки в Лондоне

Внутри спускаемого аппарата Союз ТМА-19М в экспозиции Музея науки в Лондоне

Определения и формулы

В классической механике состояние объекта, который свободно движется в гравитационном поле, называется свободным падением. Если объект падает в атмосфере, на него действует дополнительная сила сопротивления и его движение зависит не только от гравитационного ускорения, но и от его массы, поперечного сечения и других факторов. Однако на тело, падающее в вакууме, действует только одна сила, а именно сила тяжести.

Примерами свободного падения являются космические корабли и спутники на околоземной орбите, потому что на них действует единственная сила — земное притяжение. Планеты, вращающиеся вокруг Солнца, также находятся в свободном падении. Предметы, падающие на землю с небольшой скоростью, также могут считаться свободно падающими, так как в этом случае сопротивление воздуха незначительно и им можно пренебречь. Если единственной силой, действующей на предметы, является сила тяжести, а сопротивление воздуха отсутствует, ускорение одинаково для всех предметов и равно ускорению свободного падения на поверхности Земли 9,8 метров в секунду за секунду second (м/с²) или 32,2 фута в секунду за секунду (фут/ с²). На поверхности других астрономических тел ускорение свободного падения будет другим.

Командный модуль Аполлона-14 в Космическом центре им. Кеннеди, Флорида

Командный модуль Аполлона-14 в Космическом центре им. Кеннеди, Флорида

Парашютисты, конечно, говорят, что перед раскрытием парашюта они в свободном падении, но на самом деле в свободном падении парашютист не может быть никогда, даже если парашют еще не раскрыт. Да, на парашютиста в «свободном падении» действует сила притяжения, но на него также действует противоположная сила — сопротивление воздуха, причем сила сопротивления воздуха лишь слегка меньше силы земного притяжения.

Если бы не было сопротивления воздуха, скорость тела, находящегося в свободном падении, каждую секунду увеличивалась бы на 9,8 м/с.

Скорость и расстояние свободно падающего тела вычисляется так:

v₀ — начальная скорость (м/с).

v — конечная вертикальная скорость (м/с).

h₀ — начальная высота (м).

h — высота падения (м).

t — время падения (с).

g — ускорение свободного падения (9,81 м/с² у поверхности Земли).

Если v₀=0 и h₀=0, имеем:

Picture

если известно время свободного падения:

если известно расстояние свободного падения:

если известна конечная скорость свободного падения:

Эти формулы и используются в данном калькуляторе свободного падения.

В свободном падении, когда нет силы для поддержания тела, возникает невесомость. Невесомость — это отсутствие внешних сил, действующих на тело со стороны пола, стула, стола и других окружающих предметов. Иными словами — сил реакции опоры. Обычно эти силы действуют в направлении, перпендикулярном поверхности соприкосновения с опорой, и чаще всего вертикально вверх. Невесомость можно сравнить с плаванием в воде, но так, что кожа воду не ощущает. Все знают это ощущение собственного веса, кода выходишь на берег после долгого купания в море. Именно поэтому для имитации невесомости при тренировках космонавтов и астронавтов используются бассейны с водой.

Само по себе гравитационное поле не может создать давление на ваше тело. Поэтому если вы находитесь в состоянии свободного падения в большом объекте (например, в самолете), который также находится в этом состоянии, на ваше тело не действуют никакие внешние силы взаимодействия тела с опорой и возникает ощущение невесомости, почти такое же, как и в воде.

Picture

Самолет для тренировок в условиях невесомости предназначен для создания кратковременной невесомости с целью тренировки космонавтов и астронавтов, а также для выполнения различных экспериментов. Такие самолеты использовались и в настоящее время эксплуатируются в нескольких странах. В течение коротких периодов времени, которые длятся около 25 секунд в течение каждой минуты полета самолет находится в состоянии невесомости, то есть для находящихся в нем людей отсутствует реакция опоры.

Для имитации невесомости использовались различные самолеты: в СССР и в Росси для этого с 1961 года использовались модифицированные серийные самолеты Ту-104АК, Ту-134ЛК, Ту-154МЛК и Ил-76МДК. В США астронавты тренировались с 1959 г. на модифицированных AJ-2, C-131, KC-135 и Boeing 727-200. В Европе Национальным центром космических исследований (CNES, Франция) для тренировок в невесомости используют самолет Airbus A310. Модификация заключается в доработке топливной, гидравлической и некоторых других систем с целью обеспечения их нормальной работы в условиях кратковременной невесомости, а также усиления крыльев для того чтобы самолет мог выдерживать повышенные ускорения (до 2G).

Несмотря на то, что иногда при описании условий свободного падения во время космического полета на орбите вокруг Земли говорят об отсутствии гравитации, конечно сила тяжести присутствует в любом космическом аппарате. Что отсутствует, так это вес, то есть сила реакции опоры на объекты, находящиеся в космическом корабле, которые движутся в пространстве с одинаковым ускорением свободного падения, которое только немного меньше, чем на Земле. Например, на околоземной орбите высотой 350 км, на которой Международная космическая станция (МКС) летает вокруг Земли, гравитационное ускорение составляет 8,8 м/с², что всего на 10% меньше, чем на поверхности Земли.

Picture

Для описания реального ускорения объекта (обычно летательного аппарата) относительно ускорения свободного падения на поверхности Земли обычно используют особый термин — перегрузка. Если вы лежите, сидите или стоите на земле, на ваше тело действует перегрузка в 1 g (то есть ее нет). Если же вы находитесь в самолете на взлете, вы испытываете перегрузку примерно в 1,5 g. Если тот же самолет выполняет координированный поворот с малым радиусом, то пассажиры, возможно, испытают перегрузку до 2 g, означающую, что их вес удвоился.

Манекен в костюме военного пилота и кислородной маске в Канадском музее авиации и космоса

Манекен в костюме военного пилота и кислородной маске в Канадском музее авиации и космоса

Люди привыкли жить в условиях отсутствия перегрузок (1 g), поэтому любая перегрузка сильно влияет на человеческий организм. Как и в самолетах-лабораториях для создания невесомости, в которых все системы, работающие с жидкостями, должны быть модифицированы для того, чтобы они правильно работали в условиях нулевой (невесомость) и даже отрицательной перегрузки, люди также нуждаются в помощи и аналогичной «модификации», чтобы выжить в таких условиях. Нетренированный человек может потерять сознание при перегрузке 3–5 g (в зависимости от направления действия перегрузки), так как такая перегрузка достаточна для того, чтоб лишить мозг кислорода, потому что сердце не может подать в него достаточно крови. В связи с этим военные пилоты и космонавты тренируются на центрифугах в условиях высоких перегрузок, чтобы предотвратить потерю сознания при них. Для предотвращения кратковременной потери зрения и сознания, которые, по условиям работы, могут оказаться фатальными, пилоты, космонавты и астронавты надевают высотно-компенсирующие костюмы, который ограничивает отток крови от мозга во время перегрузок путем обеспечения равномерного давления на всю поверхность тела человека.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *