Как найти квадрат соседнего числа
Перейти к содержимому

Как найти квадрат соседнего числа

  • автор:

Суммы квадратов, суммы кубов.

Еще в древнем Египте была известна формула для суммы последовательных натуральных чисел: $$ 1+2+\ldots+n=\frac2 $$ (чтобы убедиться в этом, сложите первое слагаемое с последним, второе с предпоследним и т. д.).

Найдите формулу для суммы а) квадратов $1^2+2^2+\ldots+n^2$; б) кубов $1^3+2^3+\ldots+n^3$; в) четвертых степеней $1^4+2^4+\ldots+n^4$.

Подсказка 1

Начните эксперимента: вычислите первые несколько сумм ($1^2+2^2$, $1^2+2^2+3^2$ и т. д. хотя бы до $n=5$). После этого попробуйте найти закономерность.

Подсказка 2

Экспериментальные данные полезно записать в виде таблицы.

$n$ 1 2 3 4 5 6 7
$1^<\phantom1>+\ldots+n^<\phantom1>$ 1 3 6 10 15 28 35
$1^2+\ldots+n^2$ 1 5 14 30 55 91 140
$1^3+\ldots+n^3$ 1 9 36 100 225 784 1225
$1^4+\ldots+n^4$ 1 17 98 354 979 2275 4676

Попробуйте найти связь между числами в (одном столбце, но) разных строках.

Подсказка 3

Если у чисел в двух строках постоянно появляются общие делители (например, 10 и 30 делятся на 10, 15 и 55 на 5, 28 и 91 на 7. ), то полезно изучить отношение этих чисел. Что за последовательности получаются? (Удобно добавить в таблицу соответствующие строки.)

Решение

Как и предлагалось в последнем указании, изучим отношение первых двух строк.

$n$ 1 2 3 4 5 6 7
$1^<\phantom1>+\ldots+n^<\phantom1>$ 1 3 6 10 15 21 28
$1^2+\ldots+n^2$ 1 5 14 30 55 91 140
$S_2/S_1$ 1 5/3 7/3 3 11/3 13/3 5

Теперь нетрудно заметить закономерность: с увеличением $n$ на 1 частное увеличивается на $2/3$, т. е. это частное равно $(2n+1)/3$. Вместе с формулой для $1+2+\ldots+n$ это дает (гипотетический) ответ $$ 1^2+2^2+\ldots+n^2=\frac2\cdot\frac3=\frac6. $$

С суммами кубов дело обстоит даже проще, чем с квадаратами — глядя на таблицу естественно предположить, что $S_3=S_1^2$, т. е. $$ 1^3+2^3+\ldots+n^3=\frac4. $$

Заметно сложнее угадать формулу для суммы четвертых степеней. В отличие от предыдущих случаев, у $S_4(n)$ практически не видно общих делителей с $S_1(n)$ (кроме двойки). Зато можно заметить, что 14 и 98 делятся на 7, 55 и 979 на 11. Посмотрим на отношение $S_4/S_2$.

$n$ 1 2 3 4 5 6
$S_2$ 1 5 14 30 55 91
$S_4$ 1 17 98 354 979 2275
$S_4/S_2$ 1 17/5 7 59/5 89/5 25

Видно, что после домножения этого отношения на 5 получится последовательность целых чисел: 5, 17, 35, 59, 89, 125. Тут уже нельзя сказать, что разность соседних чисел неизменна. Все же посмотрим на эти разности: 12, 18, 24, 30. — закономерность сразу видна!

Итак, стало понятно, какие должны быть ответы, но как их доказать?

Задумаемся над тем, что вообще значит, что какое-то выражение $P(n)$ дает формулу для суммы $1^2+\ldots+n^2$? Это значит, что $P(1)=1$, $P(2)=P(1)+2^2$ и т. д., $P(n)=P(n-1)+n^2$. То есть все сводится к быть может утомительному, но прямолинейному вычислению: $$\begin \frac6+n^2&=&\frac6=\\ &=&\frac6=\frac6. \end$$ Аналогичным образом (говоря формально, «по индукции») можно доказать найденные выше формулы для $S_3(n)$ и $S_4(n)$.

Послесловие

Видимо наиболее наглядный способ вычислить сумму $1+2+\ldots+n$ — геометрический: об этой сумме можно думать как о треугольном числе, т. е. площади «пиксельного» (составленного из единичных квадратиков) равнобедренного прямоугольного «треугольника» со стороной $n$. Из двух таких треугольников легко составить прямоугольник размера $n\times(n+1)$, откуда и получается ответ $n(n+1)/2$ (половина площади прямоугольника).

Подобным образом можно вычислить и сумму $1^2+2^2+\ldots+n^2$: ее можно проинтерпретировать как объем пирамиды из кубиков (нижний слой которой состоит из $n^2$ кубиков, следующий из $(n-1)^2$ кубиков и т. д.), после чего сложить из 6 таких пирамид параллелепипед $n\times(n+1)\times(2n+1)$. Как это сделать, можно посмотреть на сайте «Математические этюды».

Есть геометрические доказательства и у позволяющего вычислить сумму кубов замечательного равенства $1^3+2^3+\ldots+n^3=(1+2+\ldots+n)^2$. Одно из них можно посмотреть на youtube-канале Think Twice, см. также подборку «доказательств без слов» в Кванте №11 за 2017 год.

Заметим, однако, что формула для суммы четвертых степеней не раскладывается (в отличие от предыдущих) на простые линейные множители. Видимо из-за этого ее не получается найти методами геометрического суммирования и открыта она была примерно на 1 000 лет позже, чем формула для суммы кубов (известная уже в античности).

Чтобы продвинуться дальше, полезно задуматься, что мы вообще надеемся увидеть в качестве ответа. Не любое алгебраическое выражение можно разложить на достаточно простые множители, но всегда можно, наоборот, раскрыть все скобки и привести подобные. В изученных нами случаях получаются следующие многочлены от $n$: $$\begin 1^<\phantom1>+2^<\phantom1>+\ldots+n^<\phantom1>&=&\frac12n^2+\frac12n;\\ 1^2+2^2+\ldots+n^2&=&\frac13n^3+\frac12n^2+\frac16n;\\ 1^3+2^3+\ldots+n^3&=&\frac14n^4+\frac12n^3+\frac14n^2;\\ 1^4+2^4+\ldots+n^4&=&\frac15n^5+\frac12n^4+\frac13n^3-\frac1n.\\ \end$$ Практически сразу возникает гипотеза, что вообще для любого $k$ сумма $1^k+2^k+\ldots+n^k$ равна многочлену от $n$, который начинается с $\frac1n^$ (в этом выражении изучавшие анализ сразу узнают первообразную того, что мы суммируем), дальше идет $\frac12n^k$ и члены еще меньших степеней.

С алгебраической точки зрения это очень естественный переход — но самого языка алгебры, «выражений с буквами» и преобразования таких выражений, не существовало до работ Франсуа Виета (конца 16 века)! А до появления такого языка гипотезу выше практически невозможно не то что доказать — сформулировать.

В первой половине 17 века Иоганн Фаульхабер смог найти формулы для сумм $1^k+2^k+\ldots+n^k$ до $k=17$ (интересную попытку реконструкции рассуждений Фаульхабера опубликовал Дональд Кнут). Вот несколько из таких формул: $$\begin S_2(n)&=&\frac13n^3+\frac12n^2+\frac16n;\\ S_3(n)&=&\frac14n^4+\frac12n^3+\frac14n^2;\\ S_4(n)&=&\frac15n^5+\frac12n^4+\frac13n^3&-&\frac1n;\\ S_5(n)&=&\frac16n^6+\frac12n^5+\frac5n^4&-&\frac1n^2;\\ S_6(n)&=&\frac17n^7+\frac12n^6+\frac12n^5&-&\frac16n^3&+&\frac1n;\\ S_7(n)&=&\frac18n^8+\frac12n^7+\frac7n^6&-&\frac7n^4&+&\frac1n^2. \end$$ Коэффициенты при $n^$ и при $n^k$ обсуждались выше. Подумав некоторое время вы наверняка угадаете формулу для коэффициентов при $n^$ и $n^$, а быть может, и для коэффициента при $n^$.

фрагмент «Ars Conjectandi» Я. Бернулли

Возникает надежда на общую (работающую для произвольного $k$) формулу для $S_k(n)$. И такую формулу нашел в конце 17 века Якоб Бернулли. В нее входит последовательность так называемых чисел Бернулли ($B^0=1$, $B^1=1/2$, $B^2=1/6$. ), а саму формулу можно записать символически очень коротко: $$ S_k(n)=\frac-B^>. $$ Понимать эту запись следует следующим образом. Нужно раскрыть формально в выражении $(n+B)^$ скобки, после чего начать воспринимать $B^m$ не как степень переменной $B$, а как $m$-е число Бернулли. Например: $$\begin S_2(n)&=&\frac3=\\ &=&\frac3= \frac13\left(n^3+\frac32n^2+\frac36n\right). \end$$ Если поверить в эту (крайне странную, на первый взгляд) процедуру, то будет ясно и как вычислять числа Бернулли: при подстановке $n=1$ получается равенство $1=\frac<(1+B)^-B^>$, позволяющее найти $B^k$, если числа Бернулли с меньшими номерами уже известны. В таблице ниже приведены несколько первых чисел Бернулли.

Замечательным образом те же самые числа Бернулли возникают и в квадратурных формулах для вычисления приближенных значений интегралов, и при вычислении бесконечных сумм типа $1+\frac14+\frac19+\frac1+\ldots=\frac<\pi^2>6$ (т. е. значений знаменитой дзета-функции), и в комбинаторике, и в теории чисел, и в топологии.

Литература

  1. Д. Пойа. Математика и правдоподобные рассуждения (М.: Наука, 1975)
    http://ilib.mccme.ru/djvu/polya/rassuzhdenija.htm https://mathedu.ru/text/poya_matematika_i_pravdopodobnye_rassuzhdeniya_1975
    Мало где можно прочитать не о конкретной области математики, а о том, как вообще решать новую для себя математическую задачу . Подсказки и решение выше по существу следуют главе 7 этой замечательной книги.
  2. Интервью с академиком И. М. Гельфандом // Квант, 1989, № 1, 3–12
    http://kvant.mccme.ru/1989/01/akademik_izrail_moiseevich_gel.htm
    В решении выше сделана попытка объяснить, как некоторые формулы для сумм степеней мог бы искать любой человек. Интересующимся математикой может быть интересно прочитать, как такую задачу решал в школьные годы один из выдающихся математиков 20 века (собственно про это — небольшой фразмент на стр. 8–9, но все интервью интересное).
  3. В. С. Абрамович. Суммы одинаковых степеней натуральных чисел // Квант, 1973, № 5, 22–25
    http://kvant.mccme.ru/1973/05/summy_odinakovyh_stepenej_natu.htm
    Можно прочитать доказательство формулы для суммы степеней (из конца послесловия), использующее, по сути, только бином Ньютона.
  4. Г. А. Мерзон. Алгебра, геометрия и анализ сумм степеней последовательных чисел // Матем. просв., сер. 3, вып. 21 (2017), 104–118.
    https://mccme.ru/free-books/matpros_21.html
    Можно прочитать больше о разных взглядах на задачу о суммировании степеней.
  5. Р. Грэхем, Д. Кнут, О. Паташник. Конкретная математика (М.: Мир, 1998)
    В учебнике, написанном по лекциям знаменитого Дональда Кнута, обсуждается и задача о суммировании степеней и числа Бернулли.

Квадратные числа

Квадратные числа, или точные (полные) квадраты — это натуральные числа, которые можно представить в виде квадратов натуральных чисел. Это определение можно заменить на равносильное: число называется квадратным, если значение квадратного корня из него является целым.

Таблица квадратов [ ]

Чтобы найти квадрат числа от 0 до 99, можно воспользоваться таблицей квадратов, в которой по вертикали указан первый разряд числа (или его отсутствие), а по горизонтали второй разряд:

_0 _1 _2 _3 _4 _5 _6 _7 _8 _9
0 1 4 9 16 25 36 49 64 81
1_ 100 121 Свойства квадратных чисел [ ]
  • Все точные квадраты большие 1 — составные числа
  • Произведение точных квадратов является точным квадратом:
    m 2 • n 2 = (mn) 2
  • Квадрат любого натурального числа n равен сумме первых n нечётных чисел:
    1 2 = 1,
    2 2 = 4 = 1 + 3,
    3 2 = 9 = 1 + 3 + 5,
    4 2 = 16 = 1 + 3 + 5 + 7
    и так далее
  • Последовательность, составленная из разностей соседних квадратов, является арифметической прогрессией с разностью 2:
    2 2 — 1 2 = 3,
    3 2 — 2 2 = 5,
    4 2 — 3 2 = 7
    и так далее
  • Есть квадраты квадратных чисел: 11681 256 625 и так далее
  • в десятичной системе исчисления квадратные числа могут заканчиваться только на цифры: 0 1 4 5 6 и 9

Материалы сообщества доступны в соответствии с условиями лицензии CC-BY-SA, если не указано иное.

Быстрое возведение чисел от 1 до 100 в квадрат

Вдохновленный этой статьей, решил поделиться с вами способом быстрого возведения в квадрат. Возведение в квадрат более редкая операция, нежели умножение чисел, но под нее существуют довольно интересные правила.

*квадраты до сотни

Для того, чтобы бездумно не возводить в квадрат по формуле все числа, нужно максимально упростить себе задачу следующими правилами.

Правило 1 (отсекает 10 чисел)

Для чисел, оканчивающихся на 0.
Если число заканчивается на 0, умножить его не сложнее, чем однозначное число. Стоит лишь дописать пару нулей.

70 * 70 = 4900. 

В таблице отмечены красным.

Правило 2 (отсекает 10 чисел)

Для чисел, оканчивающихся на 5.
Чтобы возвести в квадрат двузначное число, оканчивающееся на 5, нужно умножить первую цифру (x) на (x+1) и дописать к результату “25”.

75 * 75 = 7 * 8 = 56 … 25 = 5625. 

В таблице отмечены зеленым.

Правило 3 (отсекает 8 чисел)

Для чисел от 40 до 50.

XX * XX = 1500 + 100 * вторую цифру + (10 - вторая цифра)^2 

Достаточно трудно, верно? Давайте разберем пример:

43 * 43 = 1500 + 100 * 3 + (10 - 3)^2 = 1500 + 300 + 49 = 1849. 

В таблице отмечены светло-оранжевым.

Правило 4 (отсекает 8 чисел)

Для чисел от 50 до 60.

XX * XX = 2500 + 100 * вторую цифру + (вторая цифра)^2 

Тоже достаточно трудно для восприятия. Давайте разберем пример:

53 * 53 = 2500 + 100 * 3 + 3^2 = 2500 + 300 + 9 = 2809. 

В таблице отмечены темно-оранжевым.

Правило 5 (отсекает 8 чисел)

Для чисел от 90 до 100.

XX * XX = 8000+ 200 * вторую цифру + (10 - вторая цифра)^2 

Похоже на правило 3, но с другими коэффициентами. Давайте разберем пример:

93 * 93 = 8000 + 200 * 3 + (10 - 3)^2 = 8000 + 600 + 49 = 8649. 

В таблице отмечены темно-темно-оранжевым.

Правило №6 (отсекает 32 числа)

Необходимо запомнить квадраты чисел до 40. Звучит дико и трудно, но на самом деле до 20 большинство людей знают квадраты. 25, 30, 35 и 40 поддаются формулам. И остается лишь 16 пар чисел. Их уже можно запомнить при помощи мнемоники (о которой я также хочу рассказать позднее) или любыми другими способами. Как таблицу умножения 🙂
В таблице отмечены синим.

Вы можете запомнить все правила, а можете запомнить выборочно, в любом случае все числа от 1 до 100 подчиняются двум формулам. Правила же помогут, не используя эти формулы, быстрее посчитать больше 70% вариантов. Вот эти две формулы:

Формулы (осталось 24 числа)

Для чисел от 25 до 50

XX * XX = 100(XX - 25) + (50 - XX)^2 
37 * 37 = 100(37 - 25) + (50 - 37)^2 = 1200 + 169 = 1369 

Для чисел от 50 до 100

XX * XX = 200(XX - 50) + (100 - XX)^2 
67 * 67 = 200(67 - 50) + (100 - 67)^2 = 3400 + 1089 = 4489 

Конечно не стоит забывать про обычную формулу разложения квадрата суммы (частный случай бинома Ньютона):

(a+b)^2 = a^2 + 2ab + b^2. 56^2 = 50^2 + 2*50*6 + 6*2 = 2500 + 600 + 36 = 3136. 

UPDATE
Произведения чисел, близких к 100, и, в частности, их квадраты, также можно вычислять по принципу «недостатков до 100»:

Словами: из первого числа вычитаем «недостаток» второго до сотни и приписываем двузначное произведение «недостатков».

Для квадратов, соответственно, еще проще.

92*92 = (92-8)*100+8*8 = 8464 

Возведение в квадрат, возможно, не самая полезная в хозяйстве вещь. Не сразу вспомнишь случай, когда может понадобиться квадрат числа. Но умение быстро оперировать числами, применять подходящие правила под каждое из чисел отлично развивает память и «вычислительные способности» вашего мозга.

Кстати, думаю, все читатели хабры знают, что 64^2 = 4096, а 32^2 = 1024.
Многие квадраты чисел запоминаются на ассоциативном уровне. Например, я легко запомнил 88^2 = 7744, из-за одинаковых чисел. У каждого наверняка найдутся свои особенности.

Две уникальные формулы я впервые нашел в книге «13 steps to mentalism», которая мало связана с математикой. Дело в том, что раньше (возможно, и сейчас) уникальные вычислительные способности были одним из номеров в сценической магии: фокусник рассказывал байку о том, как он получил сверхспособности и в доказательство этого моментально возводит числа до сотни в квадрат. В книге так же указаны способы возведения в куб, способы вычитания корней и кубических корней.

Если тема быстрого счета интересна — буду писать еще.
Замечания об ошибках и правки прошу писать в лс, заранее спасибо.

  • Счет в уме
  • возведение в квадрат
  • тренировка памяти

Как найти квадрат соседнего числа

Изучение:

В сотенном квадрате — 100 клеток. Эти клетки составляют таблицу, в которой 10 строк и 10 столбиков. В строках числа увеличиваются слева направо на единицу, а в столбиках сверху вниз — на десяток.
Например,
числа в 1-й строке:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10;
числа в 1-м столбике:
1, 11, 21, 31, 41, 51, 61, 71, 81, 91.

Нарисуйте по клеткам в тетради 100-й квадрат и выполните задания.

  1. Выпишите по порядку числа из третьей строки.
  2. Выпишите по порядку числа из шестого столбика.
  3. Закрасьте клетки с числами 32, 54, 86, 92. Каждое число и соседние с ним 4 числа вставьте в соответствующие клетки.
    Например, соседи числа 32:

Нарисуйте в тетради части 100-го квадрата и заполните их.

Исследование. Нарисуйте по клеткам в тетради 100-й квадрат. Закрасьте клетки двумя цветами, считая сначала по четыре, а затем — по пять. Сколько клеток пришлось закрасить два раза? Для каждого из двух случаев запишите числа в порядке возрастания.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *