Как найти эквивалентную функцию
Перейти к содержимому

Как найти эквивалентную функцию

  • автор:

Применение эквивалентных функций при решении пределов

Изложен метод, позволяющий упростить вычисление пределов, применяя эквивалентные функции. Этот метод применим при вычислении пределов дробей с множителями в числителе или знаменателе. Дана таблица эквивалентных функций при x→0. Приводятся подробно разобранные примеры применения этого метода.

Метод решения

Применение эквивалентных функций позволяет упростить вычисление пределов. Если нам нужно вычислить предел дроби, то мы можем заменить множители в числителе и знаменателе эквивалентными функциями и вычислять предел от более простого выражения. Подчеркнем, что речь идет именно о множителях в дробях и произведениях. Замена эквивалентными функциями в других выражениях, например в суммах, может привести к неправильному результату. Однако, ошибки не будет, если выразить любую функцию в виде суммы эквивалентной ей функции и о малого (см. пример ⇓).

Все связанные с этим определения и теоремы приводятся на странице «О большое и о малое. Сравнение функций». Напомним некоторые из них.

Применяемые определения и теоремы

Эквивалентные функции Функции f и g называются эквивалентными (асимптотически равными) при :
при ,
если на некоторой проколотой окрестности точки ,
при , причем
.

Если при , то ;
если , то .
При этом функцию называют главной частью при . См. теорему о связи эквивалентных функций с о малым

Теорема о замене функций эквивалентными в пределе частного
Если, при , и и существует предел
, то существует и предел
.
Доказательство

Отметим часто применяемое следствие этой теоремы. Пусть мы имеем частное, составленное из конечного произведения функций: . Тогда, при вычислении предела, эти функции можно заменить на эквивалентные:
,
где . Знак равенства означает, что если существует один из этих пределов, то существует и равный ему второй. Если не существует один из пределов, то не существует и второй.

Таблица эквивалентных функций

Далее приводится таблица функций, эквивалентных при . Здесь t может быть как переменной, так и бесконечно малой функцией при : ; .

Эквивалентность при Равенство при

Предостережение

Как указывалось в самом начале, производить замену функций эквивалентными можно только в множителях дробей и произведений, предел которых мы хотим найти. В других выражениях, например в суммах, делать такую замену нельзя.

В качестве примера рассмотрим следующий предел:
.
При . Но если заменить в числителе на x , то получим ошибку:
.
Ошибки не будет, если выразить синус через эквивалентную функцию и о малое, :
.
Поскольку и , то мы снова получили неопределенность 0/0 . Это указывает на то, что для вычисления этого предела применение эквивалентной функции не достаточно. Нужно применить другой метод.

Примеры

Все примеры Далее мы приводим подробные решения следующих пределов, упрощая вычисления с помощью эквивалентных функций.
⇓, ⇓, ⇓, ⇓.

Пример 1

Из таблицы эквивалентных функций ⇑ имеем:
. Поскольку исходная функция является дробью и каждая из этих функций входит в нее в виде множителя в числителе или знаменателе, то заменим их на эквивалентные.
.

Пример 2

Из таблицы эквивалентных функций ⇑ находим:
.
Преобразуем квадрат логарифма:
.
Поскольку исходная функция является дробью и каждая из этих функций входит в нее в виде множителя в числителе или знаменателе, то заменим их на эквивалентные.
.

Пример 3

Здесь мы имеем неопределенность вида один в степени бесконечность. Приводим ее к неопределенности вида 0/0 . Для этого воспользуемся тем, что экспонента и натуральный логарифм являются взаимно обратными функциями.
.
Теперь в показателе экспоненты у нас неопределенность вида 0/0 .

Вычисляем предел:
.
Поскольку у нас дробь, то заменим некоторые множители в числителе и знаменателе эквивалентными функциями, пользуясь приведенной выше таблицей ⇑.
;
;

.

Поскольку экспонента непрерывна для всех значений аргумента, то по теореме о пределе непрерывной функции от функции имеем:
.

Пример 4

При . Выясним, к чему стремится . Поскольку здесь дробь, то заменим логарифм эквивалентной функцией: . Тогда
. Таким образом, мы имеем неопределенность вида ∞–∞ .

Преобразуем ее к неопределенности вида 0/0 . Для этого приводим дроби к общему знаменателю.
.
Здесь мы также воспользовались формулой . После преобразований, наш предел принимает следующий вид:
.

В знаменателе мы сразу можем заменить натуральный логарифм эквивалентной функцией, как это сделали выше:
.

В числителе имеется произведение двух множителей, каждый из которых тоже можно заменить эквивалентной функцией и, таким образом, упростить вычисления. В качестве эквивалентных, попробуем найти степенные функции:
.
Тогда . Считаем, что . Раскрываем неопределенность по правилу Лопиталя.
.
Если положить , то . Тогда
.
Тот же результат можно получить, применяя разложение в ряд Тейлора при :
.
Отсюда .

Найдем эквивалентную функцию для второго множителя, используя разложение в ряд Тейлора при :
.
Отсюда .

Теперь заменим множители эквивалентными функциями:
.

Примечание. Заметим, что делать замену функций на эквивалентные можно, только если функция, от которой ищется предел, является дробью или произведением. Тогда часть множителей в числителе или знаменателе можно заменить эквивалентными функциями. Так, если бы мы с самого начала заменили \ln (1+x) на x, то получили бы ошибку.

Использованная литература:
Л.Д. Кудрявцев, А.Д. Кутасов, В.И. Чехлов, М.И. Шабунин. Сборник задач по математическому анализу. Том 1. Москва, 2003.

Автор: Олег Одинцов . Опубликовано: 10-05-2019

Конев В.В. Пределы последовательностей и функций

Таблица эквивалентных бесконечно малых

Предел последовательности

Предел функции

Приближенные вычисления

Непрерывность функций

Приведенная таблица допускает более широкое толкование, а именно: если – бесконечно малая функция при xa, то

Эквивалентные бесконечно малые, применение к нахождению пределов

Функции вида α ( x ) и β ( x ) называются бесконечно малыми, если значение x → x 0 , а lim x → x 0 α ( x ) = 0 и lim x → x 0 β ( x ) = 0 .

Функции вида α ( x ) и β ( x ) называются эквивалентно бесконечно малыми, если значение x → x 0 , а lim x → x 0 α ( x ) β ( x ) = 1 .

Для нахождения пределов используют замены эквивалентных бесконечно малых. Их проводят, основываясь на данных таблицы.

Таблица эквивалентных бесконечно малых

Когда имеем α ( x ) как бесконечно малую функцию со значением x → x 0 .

sin ( α ( x ) ) эквивалентна α ( x )
t g ( α ( x ) ) эквивалентна α ( x )
a r c sin ( α ( x ) ) эквивалентна α ( x )
a r c t g ( α ( x ) ) эквивалентна α ( x )
1 — cos ( α ( x ) ) эквивалентна α ( x ) 2 2
ln ( 1 + α ( x ) ) эквивалентна α ( x )
α α ( x ) — 1 эквивалентна α ( x ) ln α
1 + α ( x ) p — 1 эквивалентна p α ( x )
1 + α ( x ) 1 p — 1 эквивалентна α ( x ) p

Для доказательства эквивалентности основываются на равенстве lim x → x 0 α ( x ) β ( x ) = 1 .

Доказать эквивалентность бесконечно малых величин ln ( 1 + α ( x ) ) и α ( x ) .

Необходимо вычислить предел отношения данных величин lim x → x 0 ln ( 1 + α ( x ) ) α ( x ) .

При использовании одно свойства логарифмов, получаем, что

lim x → x 0 ln ( 1 + α ( x ) ) α ( x ) = 1 α ( x ) ln ( 1 + α ( x ) ) = ln ( 1 + α ( x ) ) 1 α ( x )

Запишем предел вида

lim x → x 0 ln ( 1 + α ( x ) ) α ( x ) = ln ( 1 + α ( x ) ) 1 α ( x )

Логарифмическая функция считается непрерывной на своей области определения, тогда необходимо применять свойство предела непрерывных функций, причем сменить знак перед предельным переходом и логарифмом. Получаем, что

lim x → x 0 ln ( 1 + α ( x ) ) α ( x ) = ln ( 1 + α ( x ) ) 1 α ( x ) = ln lim x → x 0 1 + α ( x ) 1 a ( x )

Необходимо произвести замену переменных t = α ( x ) . Имеем, что α ( x ) является бесконечно малой функцией с x → x 0 , тогда lim x → x 0 a ( x ) = 0 . Отсюда следует, что t → 0 .

Предел принимает вид

lim x → x 0 ln ( 1 + α ( x ) ) α ( x ) = ln ( 1 + α ( x ) ) 1 α ( x ) = ln lim x → x 0 1 + α ( x ) 1 a ( x ) = = ln lim t → 0 ( 1 + t ) 1 t = ln ( e ) = 1

Ответ: lim x → x 0 ln ( 1 + α ( x ) ) α ( x ) = 1

Получение 1 говорит о том, что заданные бесконечно малые функции эквивалентны. При последнем переходе применяли второй замечательный предел.

Таблица эквивалентных бесконечно малых необходима для ускорения процесса вычисления.

Вычислить предел функции lim x → 0 1 — cos 4 x 2 16 x 4 .

Производится подстановка значений

lim x → 0 1 — cos 4 x 2 16 x 4 = 1 — cos ( 4 · 0 2 ) 16 · 0 4 = 0 0

Полученная неопределенность говорит о том, что функция бесконечно малая и для ее разрешения необходимо обратиться к таблице эквивалентных бесконечно малых. Тогда получаем, что функция 1 — cos α ( x ) является эквивалентной α ( x ) 2 2 , тогда имеем, что 1 — cos ( 4 x 2 ) является эквивалентной 4 x 2 2 2 .

После того, как была произведена замена бесконечно малой функции на ее эквивалентную, предел запишется так:

lim x → 0 1 — cos 4 x 2 16 x 4 = 0 0 = lim x → 0 ( 4 x 2 ) 2 2 16 x 4 = lim x → 0 16 x 4 32 x 4 = 1 2

Без таблицы эквивалентных бесконечно малых не имели бы возможность воспользоваться правилом Лопиталя. Получаем, что

lim x → 0 1 — cos 4 x 2 16 x 4 = 0 0 = lim x → 0 1 — cos ( 4 x 2 ) ‘ 16 x 4 ‘ = lim x → 0 8 x sin ( 4 x 2 ) 64 x 3 = = lim x → 0 sin ( 4 x 2 ) 8 x 2 = 0 0 = lim x → 0 sin 4 x 2 ‘ 8 x 2 ‘ = lim x → 0 8 x cos ( 4 x 2 ) 16 x = 1 2 lim x → 0 cos ( 4 x 2 ) = 1 2

Можно было произвести преобразование функции с применением тригонометрических формул с применением первого замечательного предела. Запишем, что

lim x → 0 1 — cos ( 4 x 2 ) 16 x 4 = 0 0 = lim x → 0 2 sin 2 ( 2 x 2 ) 16 x 4 = = lim x → 0 1 2 · sin ( 2 x 2 ) 2 x 2 · sin ( 2 x 2 ) 2 x 2 = 1 2 lim x → 0 sin ( 2 x 2 ) 2 x 2 · lim x → 0 sin ( 2 x 2 ) 2 x 2 = = п у с т ь t = 2 x 2 , t → 0 п р и x → 0 = 1 2 lim t → 0 sin ( t ) t · lim t → 0 sin ( t ) t = 1 2 · 1 · 1 = 1 2

Эквивалентные бесконечно малые функции. Таблица эквивалентных б.м. функций

Обозначают: $\alpha(x) \sim \beta(x)$ при $x \rightarrow a$.

Задание. Проверить, являются ли функции $\alpha(x) = 5(x^2-5x+6)$ и $\beta(x) = x^2-x-6$ эквивалентными бесконечно малыми при $x \rightarrow 3$.

Решение. Проверим вначале, что данные функции являются бесконечно малыми функциями в точке $x=3$:

Найдем предел отношения этих функций:

Ответ. Заданные функции $\alpha(x) = 5(x^2-5x+6)$ и $\beta(x) = x^2-x-6$ являются эквивалентными бесконечно малыми.

Таблица эквивалентных б.м. функций

Таблица эквивалентных б.м. функций при $x \rightarrow 0$

Предельные равенства для эквивалентных б.м. функций

Предел отношения двух б.м. функций $\alpha(x)$ и $\beta(x)$ при $x \rightarrow a$ равен пределу отношения эквивалентных им б.м. функций $\alpha^(x)$ и $\beta^(x)$ при $x \rightarrow a$, то есть верны предельные равенства:

Warning: file_put_contents(./students_count.txt): failed to open stream: Permission denied in /var/www/webmath-q2ws/data/www/webmath.ru/poleznoe/guide_content_banner.php on line 20

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 464 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Задание. Найти предел $\lim _ \frac>$

Решение. При $x \rightarrow 0$: $\sin 2 x \sim 2 x$

Разность двух эквивалентных б.м. функций есть б.м. функция более высокого порядка, чем каждая из них.

Верно и обратное утверждение.

Сумма конечного числа б.м. функций разных порядков эквивалентна слагаемому низшего порядка.

Слагаемое, которое эквивалентно сумме б.м. функций, называется главной частью указанной суммы.

Замена суммы б.м. функций ее главной частью называется отбрасыванием б.м. высшего порядка.

Решение. При $x \rightarrow 0$: $5 x-6 x^ \sim 5 x,$ tg $3 x \sim 3 x$

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *