Как найти амплитудное значение силы тока
Перейти к содержимому

Как найти амплитудное значение силы тока

  • автор:

Как найти амплитудное значение силы тока

Основные определения, термины
и понятия по военно-технической подготовке

  • Военно-техническая подготовка
  • Тактитка зенитных ракетных войск
  • Боевое применение зенитного ракетного комплекса

1.3. Переменный ток

1.3.1. Параметры сигналов переменного тока.

Величина переменного тока, как и напряжения, постоянно меняется во времени. Количественными показателями для измерений и расчётов применяются их следующие параметры:

http://tel-spb.ru/fac/1svg.png

Период T — время, в течении которого происходит один полный цикл изменения тока в оба направления относительно нуля или среднего значения.

Частота f — величина, обратная периоду, равная количеству периодов за одну секунду.

Один период в секунду это один герц (1 Hz)

,

Циклическая частота ω — угловая частота, равная количеству периодов за секунд.

http://tel-spb.ru/fac/ph.png

,

Обычно используется при расчётах тока и напряжения синусоидальной формы. Тогда в пределах периода можно не рассматривать частоту и время, а исчисления производить в радианах или градусах. T = 2π = 360°

Начальная фаза ψ — величина угла от нуля ( ωt = 0) до начала периода. Измеряется в радианах или градусах. Показана на рисунке для синего графика синусоидального тока.

Начальная фаза может быть положительной или отрицательной величиной, соответственно справа или слева от нуля на графике.

Мгновенное значение — величина напряжения или тока измеренная относительно нуля в любой выбранный момент времени t .

,

Последовательность всех мгновенных значений в любом интервале времени можно рассмотреть как функцию изменения тока или напряжения во времени.

Например, синусоидальный ток или напряжение можно выразить функцией:

,

С учётом начальной фазы:

,

Здесь I amp и U amp — амплитудные значения тока и напряжения.

Амплитудное значение — максимальное по модулю мгновенное значение за период.

,

Может быть положительным и отрицательным в зависимости от положения относительно нуля.

Часто вместо амплитудного значения применяется термин амплитуда тока (напряжения) — максимальное отклонение от нулевого значения.

Среднее значение (avg) — определяется как среднеарифметическое всех мгновенных значений за период T .

http://tel-spb.ru/fac/u_avg.png

,

Среднее значение является постоянной составляющей DC напряжения и тока.

Для синусоидального тока (напряжения) среднее значение равно нулю.

Средневыпрямленное значение — среднеарифметическое модулей всех мгновенных значений за период.

http://tel-spb.ru/fac/avg_1.png

,

Для синусоидального тока или напряжения средневыпрямленное значение равно среднеарифметическому за положительный полупериод.

http://tel-spb.ru/fac/avg_sin.png

,

Среднеквадратичное значение (rms) — определяется как квадратный корень из среднеарифметического квадратов всех мгновенных значений за период.

http://tel-spb.ru/fac/rms.png

,

Для синусоидального тока и напряжения амплитудой Iamp ( Uamp ) среднеквадратичное значение определится из расчёта:

http://tel-spb.ru/fac/rms_1.png

,

Среднеквадратичное — это действующее, эффективное значение, наиболее удобное для практических измерений и расчётов. Является объективным количественным показателем для любой формы тока.

В активной нагрузке переменный ток совершает такую же работу за время периода, что и равный по величине его среднеквадратичному значению постоянный ток.

http://tel-spb.ru/fac/rms_2.png

.

1.3.2. Виды модуляции сигналов.

Амплитудная модуляция — вид модуляции, при которой изменяемым параметром несущего сигнала является его амплитуда.

Тогда амплитудно-модулированный сигнал Uam ( t ) может быть записан следующим образом:

(1)

Здесь m — некоторая константа, называемая коэффициентом модуляции. Формула (1) описывает несущий сигнал U c ( t ) , модулированный по амплитуде сигналом S ( t ) с коэффициентом модуляции m . Предполагается также, что выполнены условия:

|S(t)|<1,\quad 0<m\leqslant 1.\qquad\qquad(2)

,

Выполнение условий (2) необходимо для того, чтобы выражение в квадратных скобках в (1) всегда было положительным. Если оно может принимать отрицательные значения в какой-то момент времени, то происходит так называемая перемодуляция (избыточная модуляция). Простые демодуляторы (типа квадратичного детектора) демодулируют такой сигнал с сильными искажениями.

Амплитудной модуляции свойственны следующие существенные недостатки:

1) приему амплитудно-модулированных сигналов сильно мешают индустриальные и атмосферные помехи;

2) в процессе модуляции лампа используется по мощности полностью только при подаче максимального мгновенного модулирующего напряжения, а во все остальное время она недоиспользуется.

Эти недостатки в значительной степени устраняются при частотной и фазовой модуляции.

https://upload.wikimedia.org/wikipedia/commons/thumb/b/b0/Amplitude_Modulated_Wave-hm-64.svg/300px-Amplitude_Modulated_Wave-hm-64.svg.png

Рис 1. Амплитудная модуляция с различным коэффициентом модуляции.

https://upload.wikimedia.org/wikipedia/commons/thumb/f/fd/Am-sidebands.png/300px-Am-sidebands.png

Рис 2. Спектр АМ колебания.

Частотная модуляция — вид аналоговой модуляции, при котором информационный сигнал управляет частотой несущего колебания. По сравнению с амплитудной модуляцией здесь амплитуда остаётся постоянной.

Основными характеристиками частотной модуляции являются девиация (отклонение) и индекс модуляции .

Девиация частоты (frequency deviation) – наибольшее отклонение значения модулированного сигнала от значения его несущей частоты. Единицей девиации частоты является герц (Hz), а также кратные ему единицы.

Индекс модуляции (modulation index) отношение девиации частоты к частоте модулирующего сигнала.

Колебание называют частотно-модулированным (ЧМ), если частота его изменяется пропорционально передаваемому колебанию (например звуковому) S(t). Следовательно, угловая частота такого колебания должна равняться:

,

где ω 0 и a — некоторые постоянные, которые выбираются так, чтобы частота ω изменялась в желаемых пределах.

Рис 3. Пример частотной модуляции по линейному закону.

https://upload.wikimedia.org/wikipedia/commons/thumb/d/df/Frequency-modulation.png/250px-Frequency-modulation.png

Рис 4. Пример частотной модуляции. Вверху — информационный сигнал на фоне несущего колебания. Внизу — результирующий сигнал.

Фазовая модуляция — вид модуляции, при которой фаза несущего колебания управляется информационным сигналом. Фазомодулированный сигнал s(t) имеет следующий вид:

,

где g(t) — огибающая сигнала; φ ( t ) является модулирующим сигналом; f c — частота несущего сигнала; t — время.

Фазовая модуляция, не связанная с начальной фазой несущего сигнала, называется относительной фазовой модуляцией (ОФМ).

Решающее устройство для режима QPSK демодулятора OFDMA сетей связи четвёртого поколения стандарта IEEE 802.16E мобильный WIMAX

Рис 5. Пример фазовой модуляции — двоичная фазовая модуляция BPSK.

Рис 6. AM,FM модуляции.

1.3.3. Особенности цепей переменного тока.

Переменный ток изменяется во времени по синусоидальному закону. Время, за которое совершается полный цикл изменений по величине и направлению, называется периодом. При векторном изображении синусоиды вектор периодически описывает угол а, равный 360° или в дуговом (радианном) измерении равный 2π. Следовательно, первый полупериод оканчивается при α = π, а первое максимальное значение синусоида принимает при π/2. Время, за которое вектор описывает угол 2π [рад], называется периодом и обозначается буквой Т. Число периодов в секунду называется частотой и обозначается буквой f.

[1/сек] ,

За единицу частоты принят герц (гц). Частота промышленной сети переменною тока обычно равна 50 гц.

В теории переменного тока часто приходится иметь дело с круговой частотой

[1/сек] ,

В течение периода переменный ток, изменяющийся. по синусоидальному закону, достигает максимального значения 2 раза (при π/2 и Зπ/2). Максимальное значение тока или напряжения обозначают соответственно буквами Iмакс и, Uмакс. Действующее значение переменного тока равно величине такого постоянного тока, который, проходя через сопротивление, выделяет в нем (за одинаковое время с переменным током) равное количество тепла:

Следует иметь в виду, что, например, при расчете токовой нагрузки проводов принимается во внимание действующее значение тока. Это положение во многих случаях распространяется и на напряжение. Лишь при расчете изоляции на пробой необходимо учитывать максимальное (мгновенное) значение напряжения, так как пробой может произойти во время прохождения напряжения через максимум. На шкалах измерительных приборов указываются, как правило, действующие значения тока или напряжения.

Резистор в цепи переменного тока

Здесь через IR обозначена амплитуда тока, протекающего через резистор. Связь между амплитудами тока и напряжения на резисторе выражается соотношением

Фазовый сдвиг между током и напряжением на резисторе равен нулю.

Физическая величина R называется активным сопротивлением резистора .

Конденсатор в цепи переменного тока

Соотношение между амплитудами тока IC и напряжения UC :

.

Ток опережает по фазе напряжение на угол π/2.

называется емкостным сопротивлением конденсатора .

Катушка в цепи переменного тока

Соотношение между амплитудами тока IL и напряжения UL :

.

Ток отстает по фазе от напряжения на угол π/2.

Физическая величина XL = ω L называется индуктивным сопротивлением катушки .

Амплитудное и действующее значения напряжения и силы тока

Мгновенные значения напряжения и силы тока в цепи переменного тока (рис. а): �� �� = �� m cos ω �� ; �� �� = �� m cos ω �� , где m, m – амплитудные значения напряжения и силы тока.

Действующие значения величин переменного тока равны величинам такого постоянного тока, который оказывает такое же тепловое действие, как и переменный ток. �� д = �� m 2 ; �� д = �� m 2 .

Вольтметры и амперметры переменного тока показывают действующие значения напряжения и силы тока.

Действующее значение напряжения переменного тока в бытовой электросети составляет 220 В, а амплитудное значение – около 380 В.

как найти амплитудное значение силы тока?и какой ток показывает амперметр в цепи переменного тока?

Амперметр показывает действующее значение силы тока, а чтобы найти амплитудное нужно действующее умножить на корень из двух.

Остальные ответы

Амплитудное значение по стандартным формулам, см. учебник. А ток показываемый амперметром зависит от типа амерметра. Подробности тоже в учебнике.

Похожие вопросы
Ваш браузер устарел

Мы постоянно добавляем новый функционал в основной интерфейс проекта. К сожалению, старые браузеры не в состоянии качественно работать с современными программными продуктами. Для корректной работы используйте последние версии браузеров Chrome, Mozilla Firefox, Opera, Microsoft Edge или установите браузер Atom.

Калькулятор действующего значения тока или напряжения

Переменный ток в отличии от постоянного двунаправленный, т.е. он течет сначала в одном направлении, а потом — в противоположном. Переменные токи вызывают и переменную разность потенциалов (переменное напряжение) на элементах электрической цепи. При этом могут быть разными не только временные характеристики, но и закон изменения (синусоидальный, пилообразный, прямоугольный и т.д.). Во многих случаях переменная составляющая напряжения или тока накладывается на ее постоянную составляющую, поэтому наиболее целесообразно оценивать величину тока по той работе, которую он совершает. Действующим значением переменного тока называется численное значение такого постоянного тока, который за время, равное одному периоду, выделяет в сопротивлении такое же количество тепла, что и ток переменный. В данном калькуляторе рассматривается только синусоидальный закон изменения тока или напряжения. Все измерительные приборы по умолчанию измеряют действующее значение. Для измерения амплитудного или пикового значения как правило используется отдельный режим. В обычной розетке переменное напряжение значением 220 вольт и указанно именно действующее значение, а амплитудное будет больше.

Параметры синусоидального тока

Um — Амплитудное значение напряжения.
Под амплитудным или пиковым напряжением подразумевают максимальный показатель U за один период синусоиды. Для измерения данного параметра обычно используют вольтметр импульсного типа или осциллограф.

Расчёт значения синусоидального тока

Введите одно любое значение

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *