Когда можно понизить степень дифференциального уравнения
Перейти к содержимому

Когда можно понизить степень дифференциального уравнения

  • автор:

Дифференциальные уравнения, допускающие понижение порядка

Рассмотрим три частных случая решения дифференциальных уравнений с возможностью понижения порядка. Во всех случаях понижение порядка производится с помощью замены переменной. То есть, решение дифференциального уравнения сводится к решению уравнения более низкого порядка. В основном мы рассмотрим способы понижения порядка дифференциальных уравнений второго порядка, однако их можно применять многократно и понижать порядок уравнений изначально более высокого порядка. Так, в примере 2 решается задача понижения порядка дифференциального уравнения третьего порядка.

Понижение порядка уравнения, не содержащего y и y

Это дифференциальное уравнение вида . Произведём замену переменной: введём новую функцию и тогда . Следовательно, и исходное уравнение превращается в уравнениие первого порядка

с искомой функцией .

Решая его, находим . Так как , то .

Отсюда, интегрируя ещё раз, получаем решение исходного уравнения:

где и — произвольные константы интегрирования.

Пример 1. Найти общее решение дифференциального уравнения

Решение. Произведём замену переменной, как было описано выше: введём функцию и, таким образом, понизив порядок уравнения, получим уравнение первого порядка . Интегрируя его, находим . Заменяя на и интегрируя ещё раз, находим общее решение исходного дифференциального уравнения:

Пример 2. Решить дифференциальное уравнение третьего порядка

Решение. Дифференциальное уравнение не содержит y и y‘ в явном виде. Для понижения порядка применяем подстановку:

Тогда и получаем линейное дифференциальное уравнение первого порядка:

Заменяя z произведением функций u и v , получим

Тогда получим выражения с функцией v :

Выражения с функцией u :

Дважды интегрируем и получаем:

Интегрируем по частям и получаем:

Итак, общее решение данного дифференциального уравения:

Понижение порядка уравнения, не содержащего y

Это дифференциальное уравнение вида . Произведём замену переменной как в предыдущем случае: введём , тогда , и уравнение преобразуется в уравнение первого порядка . Решая его, найдём . Так как , то . Отсюда, интегрируя ещё раз, получаем решение исходного уравнения:

где и — произвольные константы интегрирования.

Пример 3. Найти общее решение дифференциального уравнения

Решение. Уже знакомым способом произведём замену переменной: введём функцию и понизим порядок уравнения. Получаем уравнение первого порядка . Решая его, находим . Тогда и получаем решение исходного дифференциального уравнения второго порядка:

Пример 4. Решить дифференциальное уравнение

Решение. Дифференциальное уравнение не содержит y в явном виде. Поэтому для понижения порядка применяем подстановку:

Получим дифференциальное уравнение первого порядка:

Это уравение с разделяющимися переменными. Решим его:

Интегрируем полученную функцию:

Мы пришли к цели — общему решению данного дифференциального уравения:

Пример 5. Найти общее решение дифференциального уравнения

Решение. Дифференциальное уравнение не содержит y в явном виде. Поэтому для понижения порядка применяем подстановку:

Получим дифференциальное уравнение первого порядка:

Это однородное уравение, которое решается при помощи подстановки . Тогда , :

Далее потребуется интегрировать по частям. Введём обозначения:

Таким образом, получили общее решение данного дифференциального уравения:

Понижение порядка уравнения, не содержащего x

Это уравнение вида . Вводим новую функцию , полагая . Тогда

Подставляя в уравнение выражения для и , понижаем порядок уравнения. Получаем уравнение первого порядка относительно z как функции от y:

Решая его, найдём . Так как , то . Получено дифференциальное уравнение с разделяющимися переменными, из которого находим общее решение исходного уравнения:

где и — произвольные константы интегрирования.

Пример 6. Найти общее решение дифференциального уравнения

Решение. Полагая и учитывая, что , получаем . Понизив порядок исходного уравнения, получаем уравнение первого порядка с разделяющимися переменными. Приводя его к виду и интегрируя, получаем , откуда . Учитывая, что , находим , откуда получаем решение исходного дифференциального уравнения второго порядка:

При сокращении на z было потеряно решение уравнения , т.е. . В данном случае оно содержится в общем решении, так как получается из него при (за исключением решения y = 0).

Пример 7. Найти общее решение дифференциального уравнения

Решение. Дифференциальное уравнение не содержит x в явном виде. Для понижения порядка применяем подстановку:

Получим дифференциальное уравнение первого порядка:

Это уравение с разделяющимися переменными. Решим его:

Используя вновь подстановку

получим ещё одно уравнение с разделяющимися переменными. Решим и его:

Таким образом, общее решение данного дифференциального уравения:

Пример 8. Найти частное решение дифференциального уравнения

удовлетворяющее начальному условию y(0) = 1 , y‘(0) = −1 .

Решение. Дифференциальное уравнение не содержит x в явном виде. Поэтому применяем подстановку:

Таким образом, понизили порядок уравнения и получили уравнение первого порядка

Это дифференциальное уравнение с разделяющимися переменными. Разделяем переменные и интегрируем:

Чтобы определить C 1 , используем данные условия y(0) = 1 , y‘(0) = −1 или p(0) = −1 . В полученное выражение подставим y = 1 , p = −1 :

Разделяя переменные и интегрируя, получаем

Из начального условия y(0) = 1 следует

Получаем окончательное решение данного дифференциального уравнения

Пример 9. Найти частное решение дифференциального уравнения

удовлетворяющее начальному условию y(1) = 1 , y‘(1) = −1 .

Решение. Дифференциальное уравнение не содержит x в явном виде. Для понижения порядка применяем подстановку:

Таким образом, получили уравнение первого порядка

Это дифференциальное уравнение с разделяющимися переменными. Разделив обе части уравнения на p , получим

Интегрируем обе части уравнения

Используем начальные условия и определим C 1 . Если x = 1 , то y = 1 и p = y‘ = −1 , поэтому

Из начального условия y(1) = 1 следует

Получаем окончательное решение данного дифференциального уравнения

Дифференциальные уравнения, допускающие понижение порядка

Кроме распространенных однородных и неоднородных уравнений второго порядка и высших порядков с постоянными коэффициентами, рядовому студенту часто приходится сталкиваться с другим достаточно обширным классом диффуров: дифференциальными уравнениями, допускающими понижение порядка.

Различают три основных типа таких уравнений, которые мы последовательно рассмотрим на данном уроке. По какому принципу решаются данные уравнения? Старо, как второй том матана – уравнения, допускающие понижение порядка, в конечном итоге сводятся к дифференциальным уравнениям первого порядка и интегрируются с помощью методов, которые вы уже должны знать из моих статей.

Люди собрались опытные, большие, поэтому не будем проводить разминку с перекидыванием резинового мячика из рук в руки, а сразу перейдем к делу. Но и чайники тоже могут присоединиться, я не выгоняю за дверь, а ставлю ссылки на темы, по которым у вас есть пробелы.

Метод повторного интегрирования правой части

Рассмотрим дифференциальное уравнение вида , где – производная «энного» порядка, а правая часть зависит только от «икс». В простейшем случае может быть константой.

Данное дифференциальное уравнение решается последовательным интегрированием правой части. Причём интегрировать придется ровно раз.

На практике наиболее популярной разновидность является уравнение второго порядка: . Дважды интегрируем правую часть и получаем общее решение. Уравнение третьего порядка необходимо проинтегрировать трижды, и т. д. Но диффуров четвертого и более высоких порядков в практических заданиях что-то даже и не припомню.

Найти общее решение дифференциального уравнения

Решение: данное дифференциальное уравнение имеет вид .

Понижаем степень уравнения до первого порядка:

Или короче: , где – константа

Теперь интегрируем правую часть еще раз, получая общее решение:

Ответ: общее решение:

Проверить общее решение такого уравнения обычно очень легко. В данном случае нужно лишь найти вторую производную:

Получено исходное дифференциальное уравнение , значит, общее решение найдено правильно.

Решить дифференциальное уравнение

Это пример для самостоятельного решения. Как я уже где-то упоминал, иногда диффур может быть подшифрован. В предложенном примере сначала необходимо привести уравнение к стандартному виду . Решение и ответ в конце урока.

Нахождение частного решения (задача Коши) имеет свои особенности, которые мы рассмотрим в следующих двух примерах:

Найти частное решение уравнения, соответствующее заданным начальным условиям

Решение: данное уравнение имеет вид . Согласно алгоритму, необходимо последовательно три раза проинтегрировать правую часть.

Сначала понижаем степень уравнения до второго порядка:

Первый интеграл принёс нам константу . В уравнениях рассматриваемого типа рационально сразу же применять подходящие начальные условия.

Итак, у нас найдено , и, очевидно, к полученному уравнению подходит начальное условие .

В соответствии с начальным условием :

На следующем шаге берём второй интеграл, понижая степень уравнения до первого порядка:

Выползла константа , с которой мы немедленно расправляемся. Хах. Комментирую пример, а в голове возникла ассоциация, что я злой дед Мазай с одноствольным ружьём. Ну и действительно, константы отстреливаются, как только покажут уши из-под интеграла.

В соответствии с начальным условием :

И, наконец, третий интеграл:

Для третьей константы используем последний патрон :

Зайцы плачут, заряды были с солью.

Ответ: частное решение:

Выполним проверку, благо, она ненапряжная:
Проверяем начальное условие :
– выполнено.

Проверяем начальное условие :
– выполнено.

Находим вторую производную:

Проверяем начальное условие :
– выполнено.

Найдем третью производную:

Получено исходное дифференциальное уравнение

Вывод: задание выполнено верно

Наверное, все обратили внимание на следующую вещь: каков порядок уравнения – столько и констант. Уравнение второго порядка располагает двумя константами , в уравнении третьего порядка – ровно три константы , в уравнении четвертого порядка обязательно будет ровно четыре константы и т. д. Причем, эта особенность справедлива вообще для любого диффура высшего порядка.

Найти частное решение уравнения, соответствующее заданным начальным условиям

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Время от времени в дифференциальных уравнениях рассматриваемого типа приходится находить более трудные интегралы: использовать метод замены переменной, интегрировать по частям, прибегать к другим ухищрениям. Я намеренно подобрал простые примеры без всяких замысловатостей, чтобы больше внимания уделить именно алгоритму решения.

В дифференциальном уравнении в явном виде отсутствует функция

Простейшее уравнение данного типа в общем виде выглядит так:
– всё есть, а «игрека» нет. Точнее, его нет в явном виде, но он обязательно всплывёт в ходе решения.

Кроме того, вместе с «игреком» в явном виде может отсутствовать первая производная:
– это уже уравнение третьего порядка.

Может дополнительно отсутствовать и вторая производная:
– уравнение четвертого порядка.

И так далее. Думаю, все увидели закономерность, и теперь смогут без труда определить такое уравнение в практических примерах. Кроме того, во всех этих уравнениях обязательно присутствует независимая переменная «икс».

На самом деле есть общая формула, строгая формулировка, но я стараюсь избегать лишних параметров и прочих математических наворотов, поскольку уроки носят не теоретический, а практический характер. И даже общие формулы, которые я только что привел, являются не совсем полными с теоретической точки зрения.

Как решать такие уравнения? Они решаются с помощью очень простой замены.

Найти общее решение дифференциального уравнения

Решение: в данном уравнении второго порядка в явном виде не участвует переменная . Заменим первую производную новой функцией , которая зависит от «икс»:

Цель проведённой замены очевидна – понизить степень уравнения:

Получено линейное неоднородное уравнение первого порядка, с той лишь разницей, что вместо привычной функции «игрек» у нас функция «зет». Грубо говоря, отличие только в букве.

Линейное неоднородное уравнение первого порядка можно решить двумя способами: методом Бернулли (замены переменной) или методом вариации произвольной постоянной. Я выберу метод вариации произвольной постоянной, поскольку он маловато встречался в моих статьях.

Решим вспомогательное уравнение:

Разделяем переменные и интегрируем:

Общее решение вспомогательного уравнения:

Варьируя постоянную , в неоднородном уравнении проведем замену:

Пара слагаемых в левой части взаимоуничтожается, значит, мы на верном пути:

Разделяем переменные и интегрируем:

Итак, функция найдена. Тут на радостях можно забыть про одну вещь и машинально записать ответ. Нет-нет, ещё не всё. Вспоминаем, что в начале задания была выполнена замена , следовательно, нужно провести обратную замену :

Общее решение восстанавливаем интегрированием:

На заключительном этапе нарисовался партизан «игрек», который, как мы помним, в дифференциальное уравнение в явном виде не входил.

Ответ: общее решение:

В большинстве случае проверить и такие уравнения не составляет особого труда. Берём полученный ответ, находим первую и вторую производные:

Подставим первую и вторую производную в исходное уравнение :

Получено верное равенство, значит, общее решение найдено правильно.

Решить дифференциальное уравнение

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Теперь вспомним начало заданий. С помощью замены мы понижали степень уравнения и получали линейное неоднородное уравнение первого порядка. Всегда ли получается именно линейное уравнение в результате замены? Так происходит часто, но не всегда. После замены может получиться уравнение с разделяющимися переменными, однородное уравнение первого порядка, а также некоторые другие интересности.

Решить дифференциальное уравнение

Решение: в данном уравнении третьего порядка в явном виде не участвуют функция и первая производная . Замена будет очень похожей, за «зет» обозначаем младшего брата:

Таким образом, уравнение понижено до первого порядка:

Получено уравнение с разделяющимися переменными, разделяем переменные и интегрируем:

Проведем обратную замену:

Данное уравнение имеет уже знакомый с первого параграфа вид: .

Дважды интегрируем правую часть:

Ответ: общее решение:

Найти общее решение дифференциального уравнения

Это пример для самостоятельного решения. После понижения степени получится линейное неоднородное уравнение первого порядка, которое в моём образце решено методом Бернулли. Как говорится, весь арсенал в ходу.

В дифференциальном уравнении
в явном виде отсутствует независимая переменная

Третий, чуть более сложный тип уравнения, допускающий понижение порядка. Я не буду рисовать общих формул – отличительная особенность данного диффура состоит в том, что в нём в явном виде отсутствует независимая переменная «икс». То есть в исходном дифференциальном уравнении нет «икса». Вообще нет. Ни одного. Нигде.

Найти частное решение дифференциального уравнения, удовлетворяющее заданным начальным условиям
, ,

Решение: в данном уравнении в явном виде не участвует переменная . Подстановка здесь более замысловата. Первую производную заменим некоторой пока еще неизвестной функцией , которая зависит от функции «игрек»: . Обратите внимание, что функция – это сложная функция. Внешняя функция – «зет», внутренняя функция – «игрек» («игрек» сам по себе является функцией).

Учитывая, что , окончательно получаем:

В принципе, можно запомнить данную замену формально и коротко:

Другой вопрос, что студентам часто не понятно, почему в замене такая странная вторая производная: , «совершенно же очевидно, что должно быть ». А вот, оно, и не очевидно. Почему , я только что подробно прокомментировал.

Итак, в исходном уравнении проведём нашу замену:

Цель замены – опять же понизить порядок уравнения:

Одно «зет» сразу сокращаем:

Получено уравнение с разделяющимися переменными. Если – функция, зависящая от «игрек», то первая производная в дифференциалах расписывается так:
. Не допускаем машинальной ошибки – не пишем «привычное» .

Разделяем переменные и интегрируем:

Проведем обратную замену :

Как и в первом параграфе, константу целесообразно отстрелить незамедлительно, это значительно упростит дальнейшее интегрирование.

Используем оба начальных условия одновременно: ,

В полученное уравнение подставим и :

Вторую константу тоже отстреливаем. Используя начальное условие , проводим подстановку :

Выразим частное решение в явном виде:

Ответ: частное решение:

Кстати, ответ легко проверяется.

Для закрепления материала пара заключительных примеров.

Найти частное решение дифференциального уравнения, удовлетворяющее заданным начальным условиям
, ,

Решение: в данном уравнении в явном виде не участвует переменная . Еще здесь нет первой производной, но это не должно смущать – важно, что нет «иксов», а значит, используется стандартная замена:

Таким образом, степень уравнения понижена до первого порядка:

Разделяем переменные и интегрируем, не забывая, что :

Переобозначим константу через :
.

Проведём обратную замену :

Используем одновременно оба начальных условия , и найдём значение константы . Для этого в полученное уравнение подставим и:

Разделяем переменные и интегрируем:

В соответствии с начальным условием :

Ответ: частное решение:

Найти решение задачи Коши.
, ,

Это пример для самостоятельного решения.

Обратите внимание, что все три примера последнего параграфа идут с задачей Коши. Это не случайно. Специфика рассмотренного типа дифференциальных уравнений такова, что если предложить найти общее решение, то в большинстве уравнений нарисуются сложные, вычурные, а то и вообще неберущиеся интегралы. Поэтому практически всегда вам будет предложено найти частное решение.

Существуют еще некоторые типы диффуров, допускающие понижение порядка, но на практике они мне ни разу не встречались, хотя я перерешал очень много дифференциальных уравнений. Поэтому в урок были включены только те примеры, которые вам могут встретиться реально.

А сейчас пора повесить ружье на гвоздь и идти пить чай.

Удачного понижения степеней дифференциальных уравнений!

Решения и ответы:

Пример 2. Решение: преобразуем уравнение:
Данное ДУ имеет вид . Дважды интегрируем правую часть:

Ответ: общее решение:

Пример 4. Решение: преобразуем уравнение: .
Данное уравнение имеет вид . Трижды интегрируем правую часть:

В соответствии с начальным условием:

В соответствии с начальным условием:

В соответствии с начальным условием:

Ответ: частное решение:

Пример 6. Решение: в данное уравнение в явном виде не входит функция , проведем замену:

Получено линейное неоднородное уравнение первого порядка. Используем метод вариации произвольной постоянной. Решим вспомогательное уравнение:

Разделяем переменные и интегрируем:

В неоднородном уравнении проведем замену:

Таким образом:

Обратная замена:

Ответ: Общее решение:

Пример 8. Решение: Проведем замену:

Получено линейное неоднородное уравнение, замена:

Составим и решим систему:
Из первого уравнения найдем :

– подставим во второе уравнение:

Таким образом:
Обратная замена:

Дважды интегрируем правую часть:

Здесь я немножко схалтурил, интеграл от логарифма берётся по частям, и, строго говоря, последний интеграл нужно расписать подробнее.
Ответ: общее решение:

Пример 11. Решение: в данном уравнении в явном виде не участвует переменная , проведем замену:

Обратная замена:

В соответствии с начальными условиями , :

В соответствии с начальным условием :

Ответ: частное решение:

Автор: Емелин Александр

Блог Емелина Александра

(Переход на главную страницу)

Zaochnik.com – профессиональная помощь студентам,

cкидкa 15% на первый зaкaз, при оформлении введите прoмoкoд: 5530-hihi5

© Copyright mathprofi.ru, Александр Емелин, 2010-2024. Копирование материалов сайта запрещено

Дифференциальные уравнения первого порядка. Примеры решений.
Дифференциальные уравнения с разделяющимися переменными

Дифференциальные уравнения (ДУ). Эти два слова обычно приводят в ужас среднестатистического обывателя. Дифференциальные уравнения кажутся чем-то запредельным и трудным в освоении и многим студентам. Уууууу… дифференциальные уравнения, как бы мне всё это пережить?!

Такое мнение и такой настрой в корне неверен, потому что на самом деле ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ – ЭТО ПРОСТО И ДАЖЕ УВЛЕКАТЕЛЬНО. Что нужно знать и уметь, для того чтобы научиться решать дифференциальные уравнения? Для успешного изучения диффуров вы должны хорошо уметь интегрировать и дифференцировать. Чем качественнее изучены темы Производная функции одной переменной и Неопределенный интеграл, тем будет легче разобраться в дифференциальных уравнениях. Скажу больше, если у вас более или менее приличные навыки интегрирования, то тема практически освоена! Чем больше интегралов различных типов вы умеете решать – тем лучше. Почему? Придётся много интегрировать. И дифференцировать. Также настоятельно рекомендую научиться находить производную от функции, заданной неявно.

В 95% случаев в контрольных работах встречаются 3 типа дифференциальных уравнений первого порядка: уравнения с разделяющимися переменными, которые мы рассмотрим на этом уроке; однородные уравнения и линейные неоднородные уравнения. Начинающим изучать диффуры советую ознакомиться с уроками именно в такой последовательности, причём после изучения первых двух статей не помешает закрепить свои навыки на дополнительном практикуме – уравнения, сводящихся к однородным.

Есть еще более редкие типы дифференциальных уравнений: уравнения в полных дифференциалах, уравнения Бернулли и некоторые другие. Наиболее важными из двух последних видов являются уравнения в полных дифференциалах, поскольку помимо данного ДУ я рассматриваю новый материал – частное интегрирование.

Если у вас в запасе всего день-два, то для сверхбыстрой подготовки есть блиц-курс в pdf-формате.

Итак, ориентиры расставлены – поехали:

Сначала вспомним «обычные» уравнения. Они содержат переменные и числа. Простейший пример: . Что значит решить подобное уравнение? Это значит, найти множество всех чисел, которые удовлетворяют данному уравнению. Легко видеть, что детское уравнение имеет единственный корень . Выполним проверку, подставив четвёрку в уравнение:

– получено верное равенство, значит, решение найдено правильно.

Диффуры устроены примерно так же!

Дифференциальное уравнение первого порядка в общем случае содержит:
1) независимую переменную ;
2) зависимую переменную (функцию);
3) первую производную функции: .

В некоторых уравнениях 1-го порядка может отсутствовать «икс» или (и) «игрек», но это не существенно – важно чтобы в ДУ была первая производная , и не было производных высших порядков – , и т. д.

Что значит решить дифференциальное уравнение? Решить дифференциальное уравнение – это значит, найти множество всех функций, которые удовлетворяют данному уравнению (впрочем, порой, достаточно одной). То есть корнями дифференциального уравнения являются функции. Для ДУ 1-го порядка такое множество функций зачастую имеет вид , который называют общим решением дифференциального уравнения («цэ» принимает различные действительные значения).

Решить дифференциальное уравнение

Полный боекомплект. С чего начать решение?

В первую очередь нужно переписать производную немного в другом виде. Вспоминаем громоздкое обозначение , которое многим из вас наверняка казалось нелепым и ненужным. В диффурах рулит именно оно!

На втором шаге смотрим, нельзя ли разделить переменные? Что значит разделить переменные? Грубо говоря, в левой части нам нужно оставить только «игреки», а в правой части организовать только «иксы». Разделение переменных выполняется с помощью «школьных» манипуляций: вынесение за скобки, перенос слагаемых из части в часть со сменой знака, перенос множителей из части в часть по правилу пропорции и т. п.

Дифференциалы и – это полноправные множители и активные участники боевых действий. В рассматриваемом примере переменные легко разделяются перекидыванием множителей по правилу пропорции:

Переменные разделены. В левой части – только «игреки», в правой части – только «иксы».

Следующий этап – интегрирование дифференциального уравнения. Всё просто, навешиваем интегралы на обе части:

Разумеется, интегралы нужно взять. В данном случае они табличные:

Как мы помним, к любой первообразной приписывается константа. Здесь два интеграла, но константу достаточно записать один раз (т. к. константа + константа всё равно равна другой константе). В большинстве случаев её помещают в правую часть.

Строго говоря, после того, как взяты интегралы, дифференциальное уравнение считается решённым. Единственное, у нас «игрек» не выражен через «икс», то есть решение представлено в неявном виде. Решение дифференциального уравнения в неявном виде называется общим интегралом дифференциального уравнения. То есть – это общий интеграл.

Ответ в такой форме вполне приемлем, но нет ли варианта получше? Давайте попытаемся получить общее решение.

Пожалуйста, запомните первый технический приём, он очень распространен и часто применяется в практических заданиях: если в правой части после интегрирования появляется логарифм, то константу во многих случаях (но далеко не всегда!) целесообразно записать тоже под логарифмом. И записать НЕПРЕМЕННО, если получились одни логарифмы (как в рассматриваемом примере).

То есть ВМЕСТО записи обычно пишут (и это корректно, так как с таким же успехом принимает все действительные значения, что и ).

Зачем это нужно? А для того, чтобы легче было выразить «игрек». Используем свойство логарифмов . В данном случае:

Теперь логарифмы и модули можно убрать:

Функция представлена в явном виде. Это и есть общее решение.

Ответ: общее решение: .

Ответы многих дифференциальных уравнений довольно легко проверить. В нашем случае это делается совсем просто, берём найденное решение и дифференцируем его:

После чего подставляем и производную в исходное уравнение :

– получено равенство, верное для всех значений «икс» (тождество), значит, множество функций удовлетворяет уравнению , что и требовалось проверить.

Придавая константе различные значения, можно получить бесконечно много частных решений дифференциального уравнения. Ясно, что любая из функций , , и т. д. удовлетворяет дифференциальному уравнению .

Иногда общее решение называют семейством функций. В данном примере общее решение – это семейство линейных функций, а точнее, семейство прямых пропорциональностей.

После обстоятельного разжевывания первого примера уместно ответить на несколько наивных вопросов о дифференциальных уравнениях:

1) В этом примере нам удалось разделить переменные. Всегда ли это можно сделать? Нет, не всегда. И даже чаще переменные разделить нельзя. Например, в однородных уравнениях первого порядка, сначала нужно провести замену. В других типах уравнений, например, в линейном неоднородном уравнении первого порядка, нужно использовать различные приёмы и методы для нахождения общего решения. Уравнения с разделяющимися переменными, которые мы рассматриваем на первом уроке – простейший тип дифференциальных уравнений.

2) Всегда ли можно проинтегрировать дифференциальное уравнение? Нет, не всегда. Очень легко придумать «навороченное» уравнение, которое не проинтегрировать, кроме того, существуют неберущиеся интегралы. Но подобные ДУ можно решить приближенно с помощью специальных методов. Даламбер и Коши гарантируют. …тьфу, lurkmore.to давеча начитался, чуть не добавил «с того света».

3) В данном примере мы получили решение в виде общего интеграла . Всегда ли можно из общего интеграла найти общее решение, то есть выразить «игрек» в явном виде? Нет не всегда. Например: . Ну и как тут выразить «игрек»?! В таких случаях ответ следует записать в виде общего интеграла. Кроме того, иногда общее решение найти можно, но оно записывается настолько громоздко и коряво, что уж лучше оставить ответ в виде общего интеграла

4) . Пожалуй, пока достаточно. В первом же примере нам встретился ещё один важный момент, связанный с переносом переменных в знаменатель, но дабы не накрыть «чайников» лавиной информации, оставлю его до следующего урока.

Торопиться не будем. Еще одно простое ДУ и еще один типовой приём решения:

Найти частное решение дифференциального уравнения , удовлетворяющее начальному условию

Решение: по условию требуется найти частное решение ДУ, удовлетворяющее заданному начальному условию. Такая постановка вопроса называется задачей Коши.

Сначала находим общее решение. В уравнении нет переменной «икс», но это не должно смущать, главное, в нём есть первая производная.

Переписываем производную в нужном виде:

Очевидно, что переменные можно разделить, мальчики – налево, девочки – направо:

Общий интеграл получен. Здесь константу я нарисовал с надстрочной звездочкой, дело в том, что очень скоро она превратится в другую константу.

Теперь пробуем общий интеграл преобразовать в общее решение (выразить «игрек» в явном виде). Вспоминаем старое, доброе, школьное: . В данном случае:

Константа в показателе смотрится как-то некошерно, поэтому её обычно спускают с небес на землю. Если подробно, то происходит это так. Используя свойство степеней, перепишем функцию следующим образом:

Если – константа, то – тоже некоторая константа, переообозначим её через :

После чего раскрываем модуль:
и снова переобозначаем константу , подразумевая, что «цэ» может принимать как положительные, так и отрицательные значения:

Запомните «снос» константы – это второй технический приём, который часто используют в ходе решения дифференциальных уравнений. На чистовике обычно сразу переходят от к , но всегда будьте готовы объяснить этот переход. Точно так же как вы – попросили меня объяснить, и я объяснил 🙂

Итак, общее решение: . Такое вот симпатичное семейство экспоненциальных функций.

На завершающем этапе нужно найти частное решение, удовлетворяющее заданному начальному условию . Это тоже просто.

В чём состоит задача? Необходимо подобрать такое значение константы , чтобы выполнялось условие .

Оформить можно по-разному, но понятнее всего, пожалуй, будет так. В общее решение вместо «икса» подставляем ноль, а вместо «игрека» двойку:

Стандартная версия оформления:

Теперь в общее решение подставляем найденное значение константы :
– это и есть нужное нам частное решение.

Ответ: частное решение:

Выполним проверку. Проверка частного решения включает в себя два этапа:

Сначала нужно проверить, а действительно ли найденная функция удовлетворяет начальному условию ? Вместо «икса» подставляем ноль и смотрим, что получится:
– да, действительно получена двойка, значит, начальное условие выполняется.

Второй этап уже знаком. Берём полученную функцию и находим производную:

Подставляем и в исходное уравнение :

– получено тождество, далее я буду называть его верным равенством.

Вывод: частное решение найдено правильно.

Переходим к более содержательным примерам.

Решить дифференциальное уравнение

Решение: переписываем производную в нужном нам виде:

Оцениваем, можно ли разделить переменные? Можно. Переносим второе слагаемое в правую часть со сменой знака:

И перекидываем множители по правилу пропорции:

Переменные разделены, интегрируем обе части:

Должен предупредить, приближается судный день. Если вы плохо изучили неопределенные интегралы, прорешали мало примеров, то деваться некуда – придется их осваивать сейчас.

Интеграл левой части легко найти методом подведения функции под знак дифференциала, с интегралом от котангенса расправляемся стандартным приемом, который мы рассматривали на уроке Интегрирование тригонометрических функций в прошлом году:

В результате у нас получились одни логарифмы, и, согласно моей первой технической рекомендации, константу тоже определяем под логарифм.

Теперь пробуем упростить общий интеграл. Поскольку у нас одни логарифмы, то от них вполне можно (и нужно) избавиться. С помощью известных свойств максимально «упаковываем» логарифмы. Распишу очень подробно:

Упаковка завершена, чтобы быть варварски ободранной:
, и сразу-сразу приводим общий интеграл к виду , коль скоро это возможно:

Так делать, вообще говоря, не обязательно, но всегда же выгодно порадовать профессора 😉

В принципе, этот шедевр можно записать в ответ, но здесь ещё уместно возвести обе части в квадрат и переобозначить константу:

Ответ: общий интеграл:

! Примечание: общий интеграл часто можно записать не единственным способом. Таким образом, если ваш результат не совпал с заранее известным ответом, то это еще не значит, что вы неправильно решили уравнение.

Можно ли выразить «игрек»? Можно. Давайте выразим общее решение:

Само собой, полученный результат годится для ответа, но обратите внимание, что общий интеграл смотрится компактнее, да и решение получилось короче.

Третий технический совет: если для получения общего решения нужно выполнить значительное количество действий, то в большинстве случаев лучше воздержаться от этих действий и оставить ответ в виде общего интеграла. Это же касается и «плохих» действий, когда требуется выразить обратную функцию, возвести в степень, извлечь корень и т. п. Дело в том, что общее решение будет смотреться вычурно и громоздко – с большими корнями, знаками и прочим математическим трэшем.

Как выполнить проверку? Проверку можно выполнить двумя способами. Способ первый: берём общее решение , находим производную и подставляем их в исходное уравнение . Попробуйте самостоятельно!

Второй способ состоит в дифференцировании общего интеграла. Это довольно легко, главное, уметь находить производную от функции, заданной неявно:

делим каждое слагаемое на :

Получено в точности исходное дифференциальное уравнение, значит, общий интеграл найден правильно.

Найти частное решение дифференциального уравнения , удовлетворяющее начальному условию . Выполнить проверку.

Это пример для самостоятельного решения.

Напоминаю, что алгоритм состоит из двух этапов:
1) нахождение общего решения;
2) нахождение требуемого частного решения.

Проверка тоже проводится в два шага (см. образец в Примере № 2), нужно:
1) убедиться, что найденная функцию удовлетворяет начальному условию;
2) проверить, что они вообще удовлетворяет дифференциальному уравнению.

Полное решение и ответ в конце урока.

Найти частное решение дифференциального уравнения , удовлетворяющее начальному условию . Выполнить проверку.

Решение: сначала найдем общее решение. Данное уравнение уже содержит готовые дифференциалы и , а значит, решение упрощается. Разделяем переменные:

Интеграл слева – табличный, интеграл справа – берем методом подведения функции под знак дифференциала:

Общий интеграл получен, нельзя ли удачно выразить общее решение? Можно. Навешиваем логарифмы на обе части. Поскольку они положительны, то знаки модуля излишни:

(Надеюсь, всем понятно преобразование , такие вещи надо бы уже знать)

Итак, общее решение:

Найдем частное решение, соответствующее заданному начальному условию .
В общее решение вместо «икса» подставляем ноль, а вместо «игрека» логарифм двух:

Более привычное оформление:

Подставляем найденное значение константы в общее решение.

Ответ: частное решение:

Проверка: Сначала проверим, выполнено ли начальное условие :
– всё гуд.

Теперь проверим, а удовлетворяет ли вообще найденная функция дифференциальному уравнению. Находим производную:

Смотрим на исходное уравнение: – оно представлено в дифференциалах. Есть два способа проверки. Можно из найденной производной выразить дифференциал :

Подставим функцию и полученный дифференциал в исходное уравнение :

Получено верное равенство, таким образом, частное решение найдено правильно.

Второй способ проверки зеркален и более привычен: из уравнения выразим производную, для этого разделим все штуки на :

И в полученное ДУ подставим с найденной производной . В результате упрощений тоже должно получиться верное равенство.

Найти общий интеграл уравнения , ответ представить в виде .

Это пример для самостоятельного решения, полное решение и ответ в конце урока.

Какие трудности подстерегают при решении дифференциальных уравнений с разделяющимися переменными?

1) Не всегда очевидно (особенно, «чайнику»), что переменные можно разделить. Рассмотрим условный пример: . Здесь нужно провести вынесение множителей за скобки: и отделить корни: . Как действовать дальше – понятно.

2) Сложности при самом интегрировании. Интегралы нередко возникают не самые простые, и если есть изъяны в навыках нахождения неопределенного интеграла, то со многими диффурами придется туго. К тому же у составителей сборников и методичек популярна логика «раз уж дифференциальное уравнение является простым, то пусть хоть интегралы будут посложнее».

3) Преобразования с константой. Как все заметили, с константой в дифференциальных уравнениях можно обращаться достаточно вольно, и некоторые преобразования не всегда понятны новичку. Рассмотрим ещё один условный пример: . В нём целесообразно умножить все слагаемые на 2: . Полученная константа – это тоже какая-то константа, которую можно обозначить через : . Да, и поскольку у нас одни логарфимы, то константу целесообразно переписать в виде другой константы: .

Беда же состоит в том, что с индексами часто не заморачиваются и используют одну и ту же букву . В результате запись решения принимает следующий вид:

Что за дела?! Тут же ошибки! Строго говоря – да. Однако с содержательной точки зрения, ошибок нет, ведь в результате преобразования варьируемой константы получается равноценная варьируемая константа.

Или другой пример, предположим, что в ходе решения уравнения получен общий интеграл . Такой ответ выглядит некрасиво, поэтому у каждого слагаемого целесообразно сменить знак: . Формально здесь опять ошибка – справа следовало бы записать . Но неформально подразумевается, что «минус цэ» – это всё равно константа, которая с тем же успехом принимает то же множество значений, и поэтому ставить «минус» не имеет смысла.

Я буду стараться избегать небрежного подхода, и всё-таки проставлять у констант разные индексы при их преобразовании. Чего и вам советую делать.

Решить дифференциальное уравнение . Выполнить проверку.

Решение: Данное уравнение допускает разделение переменных. Разделяем переменные:

Интегрируем. В левой части подводим функцию под знак дифференциала, а в правой используем стандартный искусственный приём:

Константу тут не обязательно определять под логарифм, поскольку ничего путного из этого не получится.

Ответ: общий интеграл:

И, разумеется, здесь НЕ НАДО выражать «игрек» в явном виде, ибо получится трэш (вспоминаем третий технический совет).

Проверка: дифференцируем ответ (неявную функцию):

Избавляемся от дробей, для этого умножаем оба слагаемых на :

Получено исходное дифференциальное уравнение, значит, общий интеграл найден правильно.

Найти частное решение ДУ.
,

Это пример для самостоятельного решения. Единственная подсказка – здесь получится общий интеграл, и, правильнее говоря, нужно исхитриться найти не частное решение, а частный интеграл. Полное решение и ответ в конце урока.

Как уже отмечалось, в диффурах с разделяющимися переменными нередко вырисовываются не самые простые интегралы. И вот еще парочка таких примеров для самостоятельного решения. Рекомендую всем прорешать Примеры № 9-10, независимо от уровня подготовки, это позволит актуализировать навыки нахождения интегралов или восполнить пробелы в знаниях.

Решить дифференциальное уравнение

Решить дифференциальное уравнение

Помните, что общий интеграл можно записать не единственным способом, и внешний вид ваших ответов может отличаться от внешнего вида моих ответов. Краткий ход решения и ответы в конце урока.

Решения и ответы:

Пример 4. Решение: найдем общее решение. Разделяем переменные:

Интегрируем:

Общий интеграл получен, пытаемся его упростить. Упаковываем логарифмы и избавляемся от них:

Выражаем функции в явном виде, используя .
Общее решение:

Найдем частное решение, удовлетворяющее начальному условию .
Способ первый, вместо «икса» подставляем 1, вместо «игрека» – «е»:
.
Способ второй:

Подставляем найденное значение константы в общее решение.
Ответ: частное решение:

Проверка: проверяем, действительно ли выполняется начальное условие:
, да, начальное условие выполнено.
Проверяем, удовлетворяет ли вообще функция дифференциальному уравнению. Сначала находим производную:

Подставим функцию и найденную производную в исходное уравнение :

Получено верное равенство, значит, решение найдено правильно.

Пример 6. Решение: данное уравнение допускает разделение переменных. Разделяем переменные и интегрируем:

Примечание: тут можно получить и общее решение:

Но, согласно моему третьему техническому совету, делать это нежелательно, поскольку такой ответ смотрится довольно плохо.

Пример 8. Решение: данное ДУ допускает разделение переменных. Разделяем переменные:

Интегрируем:

Общий интеграл:
Найдем частное решение (частный интеграл), соответствующий заданному начальному условию . Подставляем в общее решение и :

Ответ: частный интеграл:
В принципе, ответ можно попричесывать и получить что-нибудь более компактное.

Пример 9. Решение: данное уравнение допускает разделение переменных. Разделяем переменные и интегрируем:

Левую часть интегрируем по частям:

В интеграле правой части проведем замену:

Таким образом:

(здесь дробь раскладывается методом неопределенных коэффициентов, но она настолько простая, что подбор коэффициентов можно выполнить и устно)

Обратная замена:

Ответ: общий интеграл:

Пример 10. Решение: данное уравнение допускает разделение переменных. Разделяем переменные и интегрируем:

Методом неопределенных коэффициентов разложим подынтегральную функцию в сумму элементарных дробей:

Примечание: интеграл можно было также найти методом выделения полного квадрата.

Ответ: общее решение:

Автор: Емелин Александр

Блог Емелина Александра

(Переход на главную страницу)

Zaochnik.com – профессиональная помощь студентам,

cкидкa 15% на первый зaкaз, при оформлении введите прoмoкoд: 5530-hihi5

© Copyright mathprofi.ru, Александр Емелин, 2010-2024. Копирование материалов сайта запрещено

Дифференциальные уравнения, допускающие понижение порядка

Укажем некоторые виды дифференциальные уравнений, допускающих понижение порядка.

I. Уравнение вида . После n-кратного интегрирования получается общее решение

II. Уравнение не содержит искомой функции и её производных до порядка включительно:

Порядок такого уравнения можно понизить на . Тогда уравнение примет вид

Из последнего уравнения, если это возможно, определяем , а затем находим из уравнения k-кратным интегрированием.

III. Уравнение не содержит независимого переменного:

Подстановка позволяет понизить порядок уравнения на единицу. При этом рассматривается как новая неизвестная функция от . Все производные выражаются через производные от новой неизвестной функции по

Подставив эти выражения вместо в уравнение, получим дифференциальное уравнение (n–1)-го порядка.

IV. Уравнение , однородное относительно аргументов , т.е.

Порядок такого уравнения может быть понижен на единицу подстановкой , где .

V. Уравнение, записанное в дифференциалах,

в котором функция , если считать и т.д. — измерения будет иметь измерение , – измерение . В результате получается дифференциальное уравнение между

Пример 1. Найти общее решение уравнения .

Решение. Интегрируя последовательно данное уравнение, имеем:

Пример 2. Найти общее решение уравнения и выделить решение, удовлетворяющее начальным условиям .

Решение. Интегрируем это уравнение последовательно три раза:

Найдем решение, удовлетворяющее заданным начальным условиям. Подставляя начальные данные в (1), будем иметь систему трёх уравнений

Отсюда . Искомым решением будет

Пример 3. Решить дифференциальное уравнение третьего порядка .

Решение. Данное уравнение не содержит искомой функции и ее производной, поэтому полагаем . После этого уравнение примет вид

Разделяя переменные и интегрируя, найдем

Заменим на , получим .

Интегрируя последовательно, будем иметь

Пример 4. Решить уравнение пятого порядка .

Решение. Уравнение не содержит искомой функции и ее производных до третьего порядка включительно. Поэтому, полагая , получаем

Последовательно интегрируя, найдем

Пример 5. Решить уравнение .

Решение. Уравнение не содержит независимого переменного получаем уравнение Бернулли

Подстановкой оно сводится к линейному уравнению

общее решение которого . Заменяя на , получаем

Разделяя переменные и интегрируя, будем иметь

, откуда , где .

Это и есть общий интеграл исходного дифференциального уравнения.

Пример 6. Решить уравнение .

Решение. Данное уравнение однородно относительно . Порядок этого уравнения понижается на единицу подстановкой , где

Подставляя выражения для в уравнение, получаем

Это уравнение линейное. Левую часть его можно записать в виде , откуда

Находим интеграл:

Общим решением данного уравнения будет

Кроме того, уравнение имеет очевидное решение , которое получается из общего при .

Пример 7. Решить уравнение .

Решение. Покажем, что это уравнение — обобщенное однородное. Считая величинами 1-го, m-го, (m–1)-го и (m–2)-го измерений соответственно и приравнивая измерения всех членов, получаем

откуда . Разрешимость уравнения (2) является условием обобщенной однородности уравнения.

Сделаем подстановку . Так как

то данное уравнение после сокращения на множитель примет вид

Положив , получим . Отсюда или . Интегрируя второе уравнение, найдем

Общее решение этого уравнения будет . Возвращаясь к переменным , получаем общее решение данного уравнения

Случай дает или — частное решение, которое получается из общего при .

Замечание. При решении задачи Кош и для уравнений высших порядков целесообразно определять значения постоянных в процессе решения, а не после нахождения общего решения уравнения. Это ускоряет решение задачи и, кроме того, может оказаться, что интегрирование значительно упрощается, когда постоянные принимают конкретные числовые значения, в то время как при произвольных интегрирование затруднительно, а то и вообще невозможно в элементарных функциях.

Пример 8. Решить задачу Коши .

Решение. Полагая , получаем откуда

Разделяя переменные, найдем

В правой части последнего равенства имеем интеграл от дифференциального бинома. Здесь , , т.е. неинтегрируемый случай.

Следовательно, этот интеграл не выражается в виде конечной комбинации элементарных функций. Однако если использовать начальные условия, то получим . Так что , откуда, учитывая начальные условия, окончательно находим .

Пример 9. Найти плоские кривые, у которых радиус кривизны пропорционален длине нормали.

Решение. Пусть — уравнение искомой кривой. Ее радиус кривизны . Длина нормали кривой равна (рис.24): .

Определяющее свойство кривой выражается дифференциальным уравнением

Разделяя переменные и интегрирую еще раз, получаем

общий интеграл исходного уравнения (3). Рассмотрим некоторые частные случаи.

1) . Тогда будем иметь , и после интегрирования . Отсюда получаем . Искомые кривые — окружности произвольных радиусов с центрами на оси .

2) . В этом случае приходим к уравнению

Полагая , найдем, что . Таким образом, искомые кривые определяются в параметрической форме уравнениями:

Это — циклоиды, образованные качение по оси окружностей произвольных радиусов.

3) . В этом случае имеем

Складывая полученные равенства, будем иметь

— это цепные линии.

Отсюда ; это — параболы, оси которых параллельны оси ординат .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *