Как найти массу через интеграл
Перейти к содержимому

Как найти массу через интеграл

  • автор:

Примеры решений произвольных тройных интегралов.
Физические приложения тройного интеграла

Во 2-й части урока мы отработаем технику решения произвольных тройных интегралов , у которых подынтегральная функция трёх переменных в общем случае отлична от константы и непрерывна в области ; а также познакомимся с физическими приложениями тройного интеграла

Вновь прибывшим посетителям рекомендую начать с 1-й части, где мы рассмотрели основные понятия и задачу нахождения объема тела с помощью тройного интеграла. Остальным же предлагаю немного повторить производные функции трёх переменных, поскольку в примерах данной статьи мы будем использовать обратную операцию – частное интегрирование функции .

Кроме того, есть ещё один немаловажный момент: если у Вас неважное самочувствие, то прочтение этой странички по возможности лучше отложить. И дело не только в том, что сейчас возрастёт сложность вычислений – у большинства тройных интегралов нет надёжных способов ручной проверки, поэтому к их решению крайне нежелательно приступать в утомлённом состоянии. При пониженном тонусе целесообразно порешать что-нибудь попроще либо просто отдохнуть (я терпелив, подожду =)), чтобы в другой раз со свежей головой продолжить расправу над тройными интегралами:

Вычислить тройной интеграл

На практике тело также обозначают буквой , но это не очень хороший вариант, ввиду того, «вэ» «зарезервировано» под обозначение объёма.

Сразу скажу, чего делать НЕ НАДО. Не нужно пользоваться свойством линейности и представлять интеграл в виде . Хотя, если очень хочется, то можно. В конце концов, есть и небольшой плюс – запись будет хоть и длинной, но зато менее загромождённой. Но такой подход всё-таки не стандартен.

Проекция тела на плоскость XOY

В алгоритме решения новизны будет немного. Сначала нужно разобраться с областью интегрирования. Проекция тела на плоскость представляет собой до боли знакомый треугольник:

Сверху тело ограничено плоскостью , которая проходит через начало координат. Предварительно, к слову, нужно обязательно проверить (мысленно либо на черновике), не «срезает» ли эта плоскость часть треугольника. Для этого находим её линию пересечения с координатной плоскостью , т.е. решаем простейшую систему: – нет, данная прямая (на чертеже отсутствует) «проходит мимо», и проекция тела на плоскость действительно представляет собой треугольник.

Сверху тело ограничено плоскостью z = x + y

Не сложен здесь и пространственный чертёж:

В действительности можно было ограничиться только им, поскольку проекция очень простая. …Ну, или только чертежом проекции, так как тело тоже простое =) Однако совсем ничего не чертить, напоминаю – плохой выбор.

Выберем следующий порядок обхода тела:

И перейдём к повторным интегралам:

Актуализируем следующее элементарное правило:

Когда функция интегрируется по какой-либо переменной, то два других аргумента считаются константами. То есть принцип точно такой же, как и при нахождении частных производных от функции трёх переменных, что естественно.

Разбираемся с интегралами:

(1) При интегрировании по «зет» и считаются константами. В данном случае присутствует только «игрек», но это не меняет дела. Советую всегда мысленно либо на черновике выполнять проверку. Найдём частную производную по «зет»:
, что и требовалось проверить.

(2) Теперь используем формулу Ньютона-Лейбница: сначала ВМЕСТО «зет» подставляем верхний предел интегрирования , затем – нижний предел (ноль). В результате буквы «зет» остаться не должно!

Сносим трофей в следующий интеграл. По существу, решение свелось к двум переменным и к двойному интегралу:

(1) Используем свойство линейности интеграла, принимая во внимание тот факт, что «игрек» считается константой. Следует отметить, что не возбраняется оставить интеграл единым, раскрыть скобки и привести подобные слагаемые, но это менее рациональный способ (можете попробовать).

(2) Используем метод подведения под знак дифференциала. Если рассуждения воспринимаются совсем тяжело, мысленно замените «игрек» каким-нибудь конкретным числом, например, «пятёркой».

(3) Интегрируем по «икс» и выполняем проверку:

(4) Используем формулу Ньютона-Лейбница. Сначала ВМЕСТО «икс» (переменной, по которой проводилось интегрирование) подставляем , затем – ноль. После подстановок буквы «икс» остаться не должно!

Причёсываем результат и сносим его в последний интеграл, не теряя находящуюся там константу:

Ответ:

Результат безразмерен – просто число и всё.

Следующий пример для самостоятельного решения:

Вычислить тройной интеграл

Примерный образец оформления задачи в конце урока.

До сих пор мы рассматривали два способа решения – это проецирование на плоскость и выбор порядка обхода проекции. Но на самом деле комбинаций больше – тело можно спроецировать на любую из 3 координатных плоскостей и каждую проекцию обойти 2 путями. Таким образом, получается 6 способов решения. И логично предположить, что в общем случае некоторые из них проще, а некоторые – труднее.

Наверняка многие обратили внимание, что в Примере № 13 я выбрал более редкий порядок обхода проекции, хотя ничто не мешало пойти «обычным» путём. Это не случайность.
В результате нахождения интеграла получена сумма , в которой чуть выгоднее считать константой именно «игрек», что при прочих равных условиях (из уравнения прямой одинаково легко выразить ) упрощает решение. А в некоторых задачах выбор порядка интегрирования и вовсе становится ОЧЕНЬ важным:

Вычислить тройной интеграл

Область интегрирования представляет собой прямоугольный параллелепипед

Решение: область интегрирования ограничена шестью плоскостями и представляет собой прямоугольный параллелепипед:

У незамысловатых областей можно не обращать внимания на проекцию и придерживаться следующего правила: обход тела осуществляется в направлениях координатных осей. Пределы интегрирования здесь очевидны

Но вот с порядком обхода не всё так просто. Если выбрать традиционный путь и сначала интегрировать по «зет», то получается неприятный интеграл , который нужно брать по частям. Аналогичная история, если интегрировать по «игрек»: , тут даже дважды по частям.

Наиболее выгодным путём является первоочередное интегрирование по «икс», в этом случае переменные , а значит, и множитель считаются константами:

Перед тем, как подставить пределы интегрирования, не помешает проверка:
– получена исходная подынтегральная функция.

Буква «икс» испарилась, как оно и должно быть.

Осталось 2 направления обхода , и следующий интеграл рациональнее взять по «зет» чтобы множитель считался константой:

В качестве дополнительного контроля снова смотрим, исчезла ли после подстановки переменная, по которой интегрировали («зет»).

И, наконец, оставшееся направление обхода и оставшийся интеграл:

При подстановках следует проявлять повышенное внимание, так, например, при подстановке нуля в выражение второе слагаемое можно машинально счесть за ноль.

На чистовике, конечно же, не нужно всё расписывать так подробно, анализ порядка интегрирования и промежуточные проверки осуществляются мысленно либо на черновике. Решение оформляется стандартно в 3 пункта, но читатели с хорошим уровнем подготовки могут записать его и «одной строкой»:

Ответ:

Наверное, это понятно, но на всякий случай закомментирую: буквенные множители-константы следует перемещать справа налево последовательно и без «перескоков» – до тех пор, пока каждая буква «не встретит свой интеграл». Условный пример:

Аналогичное задание для самостоятельного решения:

Вычислить тройной интеграл

Примерный образец чистового оформления задачи в конце урока.

Чем дальше, тем интереснее:

Физические приложения тройного интеграла

Но сначала разомнёмся физически, тело – в дело =) Пожалуйста, встаньте и найдите какой-нибудь пакет или мешок. Можно коробку. Теперь походим по квартире, ну или по улице и наведём порядок. А именно, наполним тару мусором. …Очень хорошо, молодцы. В результате ваших трудов получено ограниченное тело неоднородной плотности. Как говорится, есть бумажка, а есть жестяная крышка. Воздух, кстати, тоже обладает вполне определённой плотностью. Напоминаю, что физическая плотность – есть отношение массы к объёму, например, 100 грамм на кубический метр.

Ставим мешок рядышком и читаем дальше. Рассмотрим неоднородное (переменной плотности) тело . Если известна непрерывная в области функция плотности тела, то его масса равна следующему тройному интегралу:

Возможно, не всем понятен смысл функции плотности. Поясняю: если взять произвольную точку , принадлежащую телу , то значение функции будет равно плотности тела в данной точке.

Только не стОит находить функцию для пакета с мусором, иначе шнобелевская премия обеспечена =) …Хотя, с другой стороны нашлись же энтузиасты оценить суммарную площадь поверхности индийских слонов и создать математическую модель пивной пены.

Однако разрядились, и хватит. Разберём несколько тематических задач:

Вычислить массу неоднородного тела, ограниченного поверхностями , если известна функция его плотности .

Решение: искомое тело ограничено цилиндром сбоку, эллиптическим параболоидом – сверху и плоскостью – снизу. Дополнительные условия «загоняют нас» в 1-й октант, и проекция тела на плоскость представляет собой соответствующую «четвертинку» единичного круга:
Проекция тела представляет собой сектор единичного круга в 1-ой четверти
Аналитическим методом уточним высоту, на которой параболоид пересекает цилиндр:
и выполним пространственный чертёж:
Сверху тело ограничено эллиптическим параболоидом
Проекция сразу же наводит на мысль о переходе к цилиндрической системе координат:

Порядок обхода тела очевиден:

Ответ:

Следующий пример для самостоятельного решения:

Вычислить массу неоднородного тела, ограниченного поверхностями , если известна функция его плотности .

Краткое решение в конце урока

И старая песня о главном:

Центр тяжести тела

Подобно тому, как задача о вычислении центра тяжести плоской фигуры решалась с помощью двойного интеграла, задача об отыскании центра тяжести тела решается аналогичным способом с помощью тройного интеграла.

Что такое центр тяжести тела, довольно удачно объяснил ещё Архимед. Если тело подвесить на нить за центр тяжести, то оно будет сохранять равновесие в любом положении (как бы мы его предварительно ни повернули). В известной степени не реализуемо (таки центр тяжести внутри тела), но зато очень понятно. И вполне в стиле древнегреческого учёного, который просил дать ему точку опоры, чтобы с помощью рычага перевернуть Землю.

Центр тяжести неоднородного тела рассчитывается по формулам:

, где – функция плотности тела, а – масса тела.

Если тело однородно (золотое, серебряное, платиновое и т.д.), то формулы упрощаются. Так как плотность постоянна, и масса – есть произведение плотности на объём, получаем:
, а объём тела рассчитывается (ещё не забыли? =)) с помощью тройного интеграла .

Для центра тяжести однородного тела справедливы следующие утверждения:

– если у тела есть центр симметрии, то он является центром тяжести (простейший пример – центр шара);

– если у тела существует линия симметрии, то центр тяжести обязательно принадлежит данной линии;

– если у тела есть плоскость симметрии, то центр тяжести непременно лежит в этой плоскости.

Как видите, практически полная аналогия с центром тяжести плоской фигуры.

Ну и, само собой, не могу не порадовать вас заключительной задачей:

Найти центр тяжести однородного тела, ограниченного поверхностями , . Выполнить чертежи данного тела и его проекции на плоскость .

Тетраэдр и его центр тяжести

Решение: искомое тело ограничено координатными плоскостями и плоскостью , которую в целях последующего построения удобно представить в отрезках: . Выберем «а» за единицу масштаба и выполним трёхмерный чертёж:

На чертеже уже поставлена готовая точка центра тяжести, однако, пока мы её не знаем.

Проекция тела на плоскость очевидна, но, тем не менее, напомню, как её найти аналитически – ведь такие простые случаи встречаются далеко не всегда. Чтобы найти прямую, по которой пересекаются плоскости нужно решить систему:

Проекция тетраэдра на плоскость XOY

Подставляем значение в 1-е уравнение: и получаем уравнение «плоской» прямой:

Координаты центра тяжести тела вычислим по формулам
, где – объём тела.

Выберем «классический» порядок обхода:

1) Сначала вычислим объём тела. Его, кстати, можно узнать заранее, пользуясь известной задачей геометрии об объёме тетраэдра. Объём тетраэдра равен 1/6-й объёма прямоугольного параллелепипеда, построенного на его трёх смежных рёбрах. В нашем случае параллелепипед представляет собой куб с ребром «а», и соответственно:

Осталось аккуратно провести чистовые вычисления (желающие могут потренироваться и выполнить их самостоятельно). В примерах с громоздкими преобразованиями рекомендую записывать решение столбиком – меньше шансов запутаться:

Дело за тремя тройными интегралами. . А вы, наверное, не так давно и представить себе не могли, что окажетесь в эпицентре такого кошмара =)

2) Вычислим «иксовый» интеграл:

Таким образом, «иксовая» координата центра тяжести:

Ну что же, выглядит правдоподобно, по крайне мере, мы «попали внутрь тела».

Ввиду симметрии тетраэдра две другие координаты должны получиться такими же. Теперь ошибочный ответ практически исключён!

3) Следующая «простыня»:

4) И заключительный, более короткий интеграл:

Отмечаем на чертеже найденную точку центра тяжести и её же записываем в
ответ:

Осталось взять мешок с мусором и чувством глубокого морального удовлетворения выбросить его… нет, в окно не надо =)

Что осталось за кадром? В сетку урока не попала редко встречающая на практике сферическая система координат, в которой положение любой точки пространства однозначно определяется одним расстоянием и двумя углами. И до сферических координат у меня таки дошли пальцы в статье Дивергенция векторного поля.

Вы постоянно сетовали на простоту примеров, и поэтому я просто не мог вам не рассказать о криволинейных и поверхностных интегралах, а также основах векторного анализа.

Решения и ответы:

Пример 14: Решение: изобразим проекцию данного тела на плоскость :

Сверху тело ограничено эллиптическим параболоидом .
Выберем следующий порядок обхода:

Таким образом:

Примечание: в «зетовом» интеграле сумма считается константой, поэтому её удобно сразу вынести в следующий интеграл.

Ответ:

Тело представляет собой прямоугольный параллелепипед, расположенный в 1-м октанте

Пример 16: Решение: выполним чертёж:

Выберем следующий порядок обхода тела:

Таким образом:

Ответ:

Проекция тела на плоскость XOY представляет собой верхний полукруг

Пример 18: Решение: искомое тело ограничено эллиптическим параболоидом снизу и конической поверхностью – сверху; параболоид и конус пересекаются в плоскости по окружности (выкладки и чертёж – см. в Примере № 9 страницы Тройные интегралы). Поскольку , то речь идёт о правом (относительно плоскости ) полупространстве, и проекцией тела на плоскость является верхний полукруг единичного радиуса:

Массу тела вычислим с помощью тройного интеграла, используя цилиндрическую систему координат:

Порядок обхода тела:

Таким образом:

Ответ:

Автор: Емелин Александр

Блог Емелина Александра

(Переход на главную страницу)

Zaochnik.com – профессиональная помощь студентам,

cкидкa 15% на первый зaкaз, при оформлении введите прoмoкoд: 5530-hihi5

© Copyright mathprofi.ru, Александр Емелин, 2010-2024. Копирование материалов сайта запрещено

Криволинейные интегралы. Понятие и примеры решений

Жизнь такова, что из любой новой темы (не обязательно научной) пытливый человеческий ум стремится «выжать» по максимуму – все идеи и все возможности. Появилось понятие вектора, и, пожалуйста – курс аналитической геометрии не заставил себя ждать. А также дифференциальная геометрия, теории поля и прочие гранитные плиты для зубов разной крепости. Пришла наука к понятию производной – …ну, думаю, тут объяснять не нужно! …некоторые до сих пор отойти не могут =)

Чертёж из статьи о смысле интеграл

И интегралы тоже не стали исключением из этого правила. Давайте посмотрим на криволинейную трапецию и вспомним классическую схему интегрального исчисления:

– отрезок дробится на части;
– составляется интегральная сумма, которая равна площади ступенчатой фигуры;
– и, наконец, количество отрезков разбиения устремляется к бесконечности – в результате чего эта фигура превращается в криволинейную трапецию площади .

Аналогично выводятся формулы объема тела вращения, длины дуги кривой и др.

Более того, наводящие ужас кратные интегралы «устроены» принципиально так же – по существу, они отличается только областью интегрирования: у двойных интегралов – это не отрезок, а плоская фигура, у тройных – пространственное тело.

И, чтобы у вас сразу отлегло от сердца – наши «сегодняшние» криволинейные интегралы далеки от «ужаса», они больше похожи на «обычные» кошмары интегралы. Уже из самого названия нетрудно догадаться, что областью интегрирования таких интегралов являются кривые линии (но иногда полностью либо частично – прямые).

На уроке о пределе функции двух переменных я придумал реалистичную модель, которая снискала большую популярность – да такую, что там каждый день собираются целые экскурсии =) Итак, паркет вашей комнаты – это координатная плоскость , в углу стоит ось , а вверху «зависло» расправленное одеяло, заданное функцией .

Возьмите в руки мел и начертите на полу под одеялом произвольную кривую . Как вариант, у неё могут быть «острые углы» – такая линия называется кусочно-гладкой. Можно изобразить даже ломаную. ВажнА спрямляемость (см. урок о методах Эйлера) и непрерывность пути интегрирования. Теперь суть:

Представьте, что от одеяла осталась всего лишь одна нитка – лежащая над кривой . Вертикальная поверхность, расположенная между кривой «эль» и этой «ниткой» представляет собой фрагмент криволинейного цилиндра. Представили? Отлично!

Криволинейный интеграл первого рода

имеет вид и по модулю* равен площади данного фрагмента.

* Если график целиком или бОльшей частью расположен ниже плоскости , то площадь получится со знаком «минус».

Согласно общему принципу интегрирования, произведение бесконечно малого кусочка кривой на соответствующую высоту равно бесконечно малому элементу площади данной поверхности:. А криволинейный интеграл как раз и объединяет эти элементы вдоль всей кривой: .

! Важно: во многих источниках информации дифференциал дуги кривой обозначают через , что, на мой взгляд, не слишком удачный выбор.

Если на плоскости вместо кривой начертить отрезок прямой, то получится не что иное, как плоская криволинейная трапеция, параллельная оси . Соответствующий интеграл хоть и каламбурно, но с полным правом можно назвать «прямолинейным».

В частности, если подынтегральная функция задаёт плоскость , то криволинейный интеграл равен площади «ленты» единичной высоты, а также и длине самой линии интегрирования: .
…Чего только не придумаешь, чтобы не делать чертежей =)

Как вычислить криволинейный интеграл 1-го рода?

Пусть точки являются концами линии , а сама она задана функцией одной переменной . Тогда криволинейный интеграл первого рода можно свести к обычному определённому интегралу по следующей формуле:

Знак модуля обусловлен природой рассматриваемого интеграла: поскольку дифференциал не может быть отрицательным (это же элемент длины), то при переходе к определённому интегралу нужно соблюсти статус-кво. В случае «арабского» интегрирования справа налево (когда ) значения «икс» убывают и поэтому – в результате чего появляется побочный минус, подлежащий немедленной ликвидации. Общую формулу можно расписать подробно:
, если (стандартный случай) или:
, если .

В частности, при получается хорошо знакомая формула длины дуги кривой . Вот так-то оно бывает – оказывается, криволинейные интегралы мы уже решали! И теперь вам совсем не нужно решимости:)

Вычислить интеграл от точки до точки , если кривая задана уравнением

Решение: перед нами каноническое уравнение параболы, и коль скоро в условии дана точка , то речь идёт о её верхней ветке: .

Желающие могут выполнить чертёж. Кстати, вне зависимости от его простоты, иногда это бывает обязательным требованием условия.

В данной задаче имеет место наиболее распространённый случай , а значит, нужно использовать формулу .

Сначала удобно найти производную и упростить корень:

Так как и , то – грубо говоря, на данном шаге мы избавляемся от «игреков».

Предварительная подготовка завершена, пользуемся формулой:

Здесь можно провести замену переменной, но гораздо сподручнее подвести подкоренное выражение под знак дифференциала и обойтись без перехода к новым пределам интегрирования:

Ответ:

Если вычислить тот же самый интеграл от точки до точки , то результат не изменится. В этом случае «икс» будет убывать от 1 до 0, следовательно, дифференциал станет отрицательным и при переходе к определённому интегралу потребуется добавить знак «минус»:

Таким образом, криволинейный интеграл 1-го рода не зависит от направления интегрирования:

В этой связи типовая задача, как правило, формулируется «нейтрально»: вычислить интеграл вдоль дуги параболы , расположенной между точками . Иными словами, совершенно не важно, какая из точек является началом, а какая – концом кривой.

Следует отметить, что криволинейный интеграл можно вычислить и другим способом. Поскольку буква «игрек» ничем не хуже «икса», то для вычисления криволинейного интеграла 1-го рода справедлива «зеркальная» формула (тривиальный вариант ):
, где – обратная функция, выражающая линию . В нашей задаче:

При переходе от к мы должны избавиться от всех «иксов», однако функция от них не зависит, а значит, делать ничего не нужно.

И, учитывая, что для «игрековых» координат точек справедливо неравенство , доводим решение до того же самого результата:

В чём состоит геометрический смысл разобранной задачи? На плоскости между точками и находится кусок параболы , через который проходит «одноимённый» параболический цилиндр , «высекающий» из плоскости пространственную «ниточку». Криволинейный интеграл численно равен площади фрагмента параболического цилиндра, который расположен между куском параболы и этой «ниткой».

Как я уже отмечал, криволинейный интеграл может получиться отрицательным – это означает, что фрагмент полностью или бОльшей частью лежит ниже плоскости . Не удивляйтесь и нулю (в каких случаях?). То есть, «всё как у нормальных интегралов».

Замысловатый пример для самостоятельного решения:

Вычислить площадь фрагмента цилиндрической поверхности во 2-м и 6-м октантах , который высечен плоскостью и гиперболическим параболоидом .

Ситуацию крайне важно представить геометрически – надеюсь, на данный момент все знают, как выглядит круговой цилиндр ; картинку же последней поверхности можно найти в начале урока об экстремумах функций двух и трёх переменных (3-й чертёж). Также будет полезно изобразить на плоскости кривую интегрирования.

Краткое решение с комментариями в конце урока – тот, кто правильно во всём разберётся, может считать себя «самоваром» интегралов =)

Довольно часто линия бывает задана параметрическими уравнениями , и в этом случае нужно использовать следующую формулу:
– если значение параметра возрастает . И для убывающего параметра :

В частности, при получается опять же знакомая формула длины параметрически заданной кривой:

Вычислить криволинейный интеграл по дуге окружности при изменении параметра .

Параметрические уравнения эллипса и окружности я разбирал в тематической статье о площади и объёме, и поэтому если вам не понятен их смысл (или вообще смысл параметрического задания функции), то милости прошу по ссылке.

Возрастающему параметру соответствует интегрирование против часовой стрелки

Решение: указанным пределам изменения параметра соответствует левая верхняя дуга единичной окружности:

По условию, значение параметра возрастает, поэтому:

Нет, конечно, можно интегрировать и от до с добавочным минусом, но зачем?

Как и в предыдущих примерах, сначала удобно найти производные и причесать корень:

…мда, тут вообще стрижка наголо получилась =)

Ответ:

Два последних примера похожи, как близкие родственники, однако между ними есть существенное различие: в Примере 2 требовалось найти площадь, и поэтому было принципиально важно проанализировать положение поверхности относительно плоскости . В третьем же примере нужно было вычислить интеграл формально. Как видите, различие здесь точно такое же, как и между вычислением площади с помощью определённого интеграла и «просто» вычислением определённого интеграла.

И, разумеется, криволинейные интегралы обладают всеми типичными свойствами «клана интегралов», в частности, для них справедливо свойство линейности:

а также свойство аддитивности: если на линии выбрать промежуточную точку , то интеграл можно разделить на две части:

Или вот такой – более практически важный пример, …сейчас что-нибудь придумаю, чтобы легко было нарисовать в уме,… предположим, нам нужно вычислить криволинейный интеграл по ломаной :
, где .

Да без проблем – представим его в виде суммы двух интегралов по отрезкам :
– и вперёд с песнями.

И на всякий пожарный формула для кривой, заданной уравнением в полярных координатах:

Кроме того, у криволинейного интеграла 1-го рода существуют физические приложения, в частности, с помощью него можно вычислить массу плоской дуги , если – функция её плотности.

Впрочем, криволинейные интегралы 1-го рода – это вообще нечастый гость в самостоятельных и контрольных работах (по крайне мере, у студентов-заочников), однако если вам этих примеров не достаточно, то загляните, например, во 2-й том К.А. Бохана. Там, к слову, вполне доступно разобрана и теория.

Мой же урок ориентирован на реальную практику, и по этой причине значительная его часть будет посвящена

криволинейным интегралам второго рода

«Реалити-шоу» точно такое же. Отличие будет в способе интегрирования. Если в интеграле мы объединяли бесконечно малые кусочки самой линии , то сейчас интегрирование пойдёт по проекциям этих кусочков на ось абсцисс:
,
или, как вариант – по их проекциям на ось ординат:
,
и если не параллельна координатным осям, то:
.

В большинстве задач приходится иметь дело с так называемой общей формой криволинейного интеграла от двух функций:

С практической точки зрения будут важнЫ те же свойства линейности и аддитивности, а также тот факт, что:

криволинейный интеграл 2-го рода зависит от направления интегрирования, причём:

И в самом деле – здесь же интегрирование осуществляется не по длинам (которые беспрекословно положительны), а по их безразмерным проекциям, которые могут быть и отрицательными.

С чисто формальной точки зрения криволинейный интеграл 2-го рода «опознаётся» по наличию в подынтегральном выражении дифференциалов (намного реже – какого-то одного), и алгоритм его решения гораздо бесхитростнее, нежели «разборки» со «старшим братом»:

Вычислить криволинейный интеграл , где – отрезок прямой от точки до точки . Выполнить чертёж.

Решение: на первом шаге нам нужно найти уравнение прямой, которая содержит отрезок . Составим его по двум точкам:

При вычислении криволинейного интеграл 2-го рода принципиально важно направление интегрирования

Несмотря на то, что линия интегрирования весьма простА, по условию требуется выполнить чертёж:

Обязательно указываем направление интегрирования! – здесь оно имеет принципиальное значение. Также обратите внимание на область определения подынтегральных функций – в данном примере , и поэтому линия интегрирования не должна пересекать координатные оси! Иногда авторы задачников и методичек недоглядывают за этим моментом, в результате чего получается невразумительное решение, где ответ, например, может оказаться бесконечным. Нет, конечно, мы вправе рассмотреть и несобственный криволинейный интеграл, но обычно задумка совсем не такая.

Криволинейный интеграл 2-го рода тоже сводится к определённому интегралу с «избавлением» либо от всех «игреков», либо от всех «иксов».

Способ первый, традиционный, где осуществляется переход к интегрированию по переменной . Пределы интегрирования, как нетрудно догадаться, соответствуют «иксовым» координатам точек , при этом не имеет значения, какой из них больше, а какой меньше; НО, принципиально важен порядок – интегрировать нужно строго по заданному направлению: от 1 до 3.

Берём уравнение линии и находим дифференциал:

Подставим и в подынтегральное выражение – всё настолько прозрачно, что я даже формулу записывать не буду:

Ответ:

Если проинтегрировать наоборот – от точки до точки , то получится то же самое, только с другим знаком: – в силу известного свойства определённого интеграла.

Способ второй состоит в переходе к интегрированию по переменной . Для этого из уравнения выразим обратную функцию:

и найдём дифференциал .

Перейдём к определённому интегралу от 1 до 2 («игрековые» координаты точек и ), подставив при этом в подынтегральное выражение и :

Второй способ оказался технически труднее, но, разумеется, бывает и наоборот. Поэтому перед решением всегда полезно «прикинуть» оба пути. И да – проверка же, не ленИтесь!

Но тут есть исключение: если фрагмент или весь путь интегрирования параллелен координатной оси, то способ остаётся только один! Ибо проекция этого участка на другую ось равна нулю.

Ответ:

Для самостоятельного решения я всегда стараюсь подбирать наиболее интересные задачи, которые мои студенты всегда выполняют с большим энтузиазмом иначе ни хрена не сдадут:);-)

Вычислить криволинейный интеграл от точки до точки вдоль ломаной, состоящей из отрезков прямых . Выполнить чертёж.

Краткое решение и ответ в конце урока.

У многих читателей наверняка назрел вопрос: в чём смысл такого интегрирования? У криволинейных интегралов 2-го рода есть каноничный физический смысл (и не только), с которым мы непременно познакомимся на следующем уроке (Интегрирование по замкнутому контуру и формула Грина). Всё будет – и примеры, и пояснения, и ссылки. А пока нарабатываем технические навыки.

Вычислить криволинейный интеграл , где – дуга кривой от точки до точки .

Криволинейный интеграл 2-го рода по дуге логарифма

Решение: для удобства выполним чертёж, не забывая подметить, что линия интегрирования не может пересекать ось ординат (т.к. ), впрочем, она здесь заведомо не может – ибо логарифм:

И сейчас я вас познакомлю с ещё одним приёмом решения. По причине той же аддитивности, интеграл можно разделить на две части:
– и с каждым из них разделаться по отдельности:

1) Вычислим . Так как , то , изменяется от 1 до :

Надеюсь, на данный момент все читатели понимают, как решать интеграл подведением функции под знак дифференциала. Результат, кстати, не помешает проверить интегрированием по «игрек»:

изменяется от 0 до 1 (см. чертёж):

, что и требовалось проверить. Напоминаю, что второй путь можно смело выбирать и за основной.

Со второй частью всё проще:

Контроль по «игрек»:

Осталось просуммировать полученные значения:

Ответ:

Разделение интеграла особенно удобно в тех случаях, когда подынтегральное выражение сильно «наворочено». Очередная «бомба» для самостоятельного решения:

Проверить, существует ли интеграл по данной кривой, и вычислить его, если это возможно
– по дуге параболы от точки до начала координат.
Выполнить чертёж.

Вспоминаем, как интегрируются дроби. Краткое решение и ответ в конце урока.

И в заключение урока пара ласковых о параметрически заданной кривой:

Вычислить криволинейный интеграл по кривой

Решение: чертежа здесь, благо, чертить не требуется, да он и не нужен – условие таково, что снимай данные, да решай.

Как решать? Объясню буквально в 7 словах:)

– в подынтегральном выражении нужно всё выразить через параметр.

При этом во многих случаях, и в этом в частности, «начинку» удобно обработать отдельно. Сначала разбираемся с дифференциалами:

Теперь без спешки и ВНИМАТЕЛЬНО подставляем их вместе с прародителями в подынтегральное выражение, после чего аккуратно проводим упрощения:

И что приятно, тут не нужно думать над пределами изменения параметра:

Ответ:

Вычислить криволинейный интеграл по верхней половине эллипса . Интегрировать против часовой стрелки.

Статья о площади и объёме для параметрически заданной линии в помощь (Пример 2). Краткое решение и ответ совсем рядом.

Во второй части урока мы рассмотрим интереснейший случай интегрирования по замкнутому контуру, а также физический смысл криволинейного интеграла 2-го рода.

Жду вас с нетерпением!

Решения и ответы:

Линия интегрирования находится во 2-й координатной четверти

Пример 2: Решение: проекцией цилиндра на плоскость является «одноимённая» окружность единичного радиуса:

По условию, , следовательно: , то есть в рассматриваемой области поверхность расположена ниже плоскости . Площадь искомого фрагмента цилиндрической поверхности вычислим с помощью криволинейного интеграла 1-го рода по дуге , при этом к интегралу следует добавить знак «минус» (по причине указанного выше обстоятельства):

Интегрирование проведём по переменной от точки до точки . Так как , то используем формулу .
Примечание: можно интегрировать в обратном направлении (от 0 до –1), но тогда к интегралу следует добавить дополнительный минус.
Верхняя полуокружность задаётся функцией . Найдём производную и упростим корень:

Таким образом:

Ответ:

Криволинейный интеграл по ломаной

Пример 5: Решение: выполним чертёж:

Интеграл по ломаной вычислим как сумму интегралов по её звеньям:

1) На отрезке : изменяется от 1 до 3:

Примечание: т.к. параллелен оси абсцисс, то 2-й способ применить нельзя!

2) На отрезке : изменяется от 3 до 4:

Криволинейный интеграл 2-го рода по дуге параболы

Пример 7: Решение: линия интегрирования спрямляема, непрерывна и не пересекает прямые , значит, данный криволинейный интеграл существует. Выполним чертёж:

Представим интеграл в виде:

1) Вычислим .
, изменяется от 1 до 0:

2) Вычислим .
, изменяется от –1 до 0:

Ответ: интеграл по данной кривой существует и равен

Пример 9: Решение: запишем параметрические уравнения эллипса:

Найдём дифференциалы:

Выполним подстановку и упростим подынтегральное выражение:

Предложенной дуге и направлению интегрирования соответствует изменение параметра от 0 до :

Автор: Емелин Александр

Блог Емелина Александра

(Переход на главную страницу)

Zaochnik.com – профессиональная помощь студентам,

cкидкa 15% на первый зaкaз, при оформлении введите прoмoкoд: 5530-hihi5

© Copyright mathprofi.ru, Александр Емелин, 2010-2024. Копирование материалов сайта запрещено

Кратные и криволинейные интегралы ( )

Мы рассмотрим в основном криволинейные интегралы по плоским кривым. В дальнейшем под кривой будем понимать кусочно-гладкую кривую.

Пусть L = АВ — незамкнутая кривая в плоскости хОу с концевыми точками А , В; z=f (x,y) — функция, определенная на кривой L . Разобьем кривую L последовательными точками

На дуге d i выберем произвольную точку М i (ti , si) (i = 1,2, . . . , n) ( рис. 13). Обозначим D li длину дуги d i , а .

Составим интегральную сумму функции f (x,y ) по кривой L

Определение. Предел , если он существует, называется криволинейным интегралом 1-го рода от функции f (x,y ) по кривой L и обозначается

В случае замкнутой кривой L выбирается произвольная точка на кривой, которая принимается за концевые точки А, В, и криволинейный интеграл 1-го рода определяется аналогично случаю незамкнутой кривой.

Теорема (достаточное условие существования интеграла). Если функция f (x,y ) непрерывна на кривой L за исключением, быть может, конечного числа точек и ограничена на L, то криволинейный интеграл 1-го рода (20) существует.

Некоторые свойства криволинейного интеграла 1-го рода. Для криволинейных интегралов 1-го рода выполняются свойства линейности и аддитивности (см. аналогичные свойства для тройного интеграла в п. 10).

1) ½ L ½ = , где ½ L ½ — длина кривой L .

2) Криволинейный интеграл 1-го рода (20) не зависит от ориентации кривой L . Это значит, что интеграл не зависит от того, какая из концевых точек А и В является начальной точкой кривой.

Физический смысл криволинейного интеграла 1-го рода. Пусть L — кривая с линейной плотностью массы m (х, у). Тогда масса кривой равна

Замечание. Криволинейный интеграл 1-го рода аналогично определяется и для пространственной кривой.

15. Вычисление криволинейного интеграла 1-го рода.

Пусть кривая L задана параметрическими уравнениями

x = j (t), y= y (t), a ? t ? b ,

где j (t), y (t) — непрерывно дифференцируемые на отрезке [ a , b ] функции. Тогда

Пусть кривая L задана явно уравнением

y=g (x), a ? x ? b ,

где g (x) — непрерывно дифференцируемая на [ a , b ] функция. Тогда

Примеры. 12) Вычислить интеграл , где L — часть окружности x 2 + y 2 = 4, расположенная в первой четверти координатной плоскости.

Решение. Параметрическое уравнение данной кривой L имеет вид x = 2cost , y=2sint, 0 ? t ? p /2 . Положив

применим формулу (22). Сначала вычислим

Теперь по формуле (22) имеем

13) Вычислить массу части параболы y 2 =4х от точки О (0, 0) до точки А(4, 4) , если ее линейная плотность равна m (х, у) = у.

Решение. Кривая ОА приведена на рис.15. Положим

По формуле (23) имеем

16. Криволинейный интеграл 2-го рода.

Рассмотрим ориентированную незамкнутую кривую L = АВ в плоскости хОу с началом в точке А и концом в точке В; z=f (x,y ) — функция, определенная на кривой L . Разобьем кривую L последовательными точками

на дуги d 1 = А0А1, d 2 = А1А2, . . . , d n = А n-1 А n и на дуге d i выберем произвольную точку М i (ti , si) (i = 1, 2, . . . , n) ( рис. 16). Обозначим D xi = xixi — 1 , D yi = yiyi — 1 , а d — наибольшую из длин дуг d i ( i = 1,2, . . . , n).

Составим интегральную сумму функции f (x,y ) по кривой L относительно х

Определение. Предел , если он существует, называется криволинейным интегралом 2-го рода от функции f (x,y ) по кривой L относительно х и обозначается

В случае замкнутой кривой L выбирается произвольная точка на кривой, которая принимается за концевые точки А, В, и криволинейный интеграл 2-го рода определяется аналогично случаю незамкнутой кривой.

Теорема (достаточное условие существования интеграла). Если функция f (x,y ) непрерывна на кривой L за исключением, быть может, конечного числа точек и ограничена на L, то криволинейный интеграл 2-го рода (24) существует.

Некоторые свойства криволинейного интеграла 2-го рода. Для криволинейных интегралов 2-го рода выполняются свойства линейности и аддитивности (см. аналогичные свойства для тройного интеграла в п. 10).

Это свойство связано с тем, что при изменении направления обхода кривой все приращения D x i и, следовательно , интегральная сумма Sx изменяют знак .

Аналогично определяется криволинейный интеграл 2 -го рода от функции g (x,y ) по кривой L относительно у

Пусть на ориентированной кривой L определены две функции f (x, y) и g (x, y) . Тогда сумма интегралов (24) и (25) называется общим криволинейным интегралом 2-го рода от функций f (x,y) и g (x,y ) по кривой L и обозначается

Физический смысл криволинейного интеграла 2-го рода. Пусть

— сила, действующая на материальной точку М ( x, y) ориентированной кривой L . Тогда работа, совершаемая силой при перемещении точки М вдоль ориентированной кривой L , равна

Замечание. Криволинейный интеграл 2-го рода аналогично определяется и для пространственной ориентированной кривой.

Площадь плоской фигуры. Пусть простая замкнутая кривая 3 L ориентирована “ против часовой стрелки ” , D — область, ограниченная кривой L . Тогда площадь области D равна

17. Вычисление криволинейного интеграла 2-го рода.

Пусть ориентированная кривая L задана параметрическими уравнениями

x = j (t), y= y (t), a ? t ? b ,

где j (t), y (t) — непрерывно дифференцируемые на отрезке [ a , b ] функции. Тогда

Пределы интегрирования выбираются в соответствии с ориентацией кривой L : если ориентации кривой L соответствует изменение параметра t от a до b , то в формуле (29) выбирается первый вариант пределов интегрирования. В противном случае в (29) нужно выбирать вариант пределов интегрирования в скобках.

Пусть кривая L задана явно уравнением y=h(x), a ? x ? b , где h (x) — непрерывно дифференцируемая на отрезке [ a , b ] функция. Тогда

Пределы интегрирования выбираются в соответствии с ориентацией кривой L , как в формуле (29).

Пусть кривая L задана явно уравнением x=h(y), a ? y ? b , где h (y) — непрерывно дифференцируемая на отрезке [ a , b ] функция. Тогда

Пределы интегрирования выбираются в соответствии с ориентацией кривой L , как в формуле (29).

Примеры. 14) Вычислить работу силы , приложенной к точке М( x , y) при перемещении точки вдоль кривой x = 2cost , y=2sint, 0 ? t ? p /2 от точки (0, 2) до точки (2, 0).

Решение. Данная кривая — это дуга ВА из рис. 14. По формуле (27) искомая работа равна

Положим и применим формулу (29). При этом учтем, что при движении по кривой от точки В до точки А параметр t изменяется от p / 2 до 0.

15) Вычислить , где кривая ОА дана на рис. 15.

Решение. Кривая ОА задается уравнением Положив ,

применим формулу (29), при этом учтем тот факт, что при движении по кривой от точки О до А переменная x меняется от 0 до 4.

16) Вычислить где L — замкнутая кривая ОВАО из рис. 15.

Решение. Кривая L состоит из линий ОВ, ВА и АО. По свойству аддитивности

Отрезок ОВ задается уравнением у = 0 при 0 ? х ? 4. Значит, dy = 0. Тогда по формуле (30)

Отрезок В A задается уравнением х = 4 при 0 ? у ? 4. Тогда dх = 0 и по формуле (31) имеем

Кривая АО задается уравнением при изменении значения у от 4 до 0. Значит, и по формуле (31) получаем

Подставив вычисленные интегралы в (32), получаем

Замечание. По формуле (28) видно, что вычисленный интеграл равен удвоенной площади области, ограниченной контуром ОВАО.

Хотите публиковаться на портале? Присылайте свои предложения, книги, статьи на info@allmath.ru.

Найти массу пластинки (двойной интеграл)

Author24 — интернет-сервис помощи студентам

Здравствуйте. Мне в задании необходимо найти массу пластинки, ограниченной кривыми: x^2+y^2<=9 и y>=x. И дана плотность p=x^2+y^2
Проблема в том, что я не могу никак определить области изменения x и у по графику.
А график получается такой:
[]http://cs619916****/v619916603/6700/FnbxK7Ui-oI.jpg[/]
Я перешёл к полярным координатам, но на самом деле только запутался.
Может, кто представляет, как найти область для интеграла?
[]http://cs619916****/v619916603/6700/FnbxK7Ui-oI.jpg[/]

Правила, 5.18. Запрещено размещать задания и решения в виде картинок и других файлов с их текстом.

Задания набирать ручками. Один вопрос — одна тема. Для формул есть редактор.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *