Как найти угол фи
Перейти к содержимому

Как найти угол фи

  • автор:

найти угол фи, cos фи = 2.07317073

В поисковике Нигма. ру в строку поиска введи
tg (х градусов) = 2.07317073
(если ответ нужен в градусах) или
tg х = 2.07317073
(если ответ нужен в радианах)
и кликни «Найти».

Остальные ответы
такого угла не существует, косинус не может быть больше 1.
семьдесят неполные

cos фи = 2.07317073
фи = arccos(2.07317073) = ответа нет.

Потому что ты неправильно посчитал. Справа должно получиться число от 0 до 1.

Похожие вопросы
Ваш браузер устарел

Мы постоянно добавляем новый функционал в основной интерфейс проекта. К сожалению, старые браузеры не в состоянии качественно работать с современными программными продуктами. Для корректной работы используйте последние версии браузеров Chrome, Mozilla Firefox, Opera, Microsoft Edge или установите браузер Atom.

Коэффициент мощности косинус фи — наглядное объяснение простыми словами.

что такое косинус фи

Многие из вас наверняка видели на электроинструментах, двигателях, а также люминесцентных лампах, лампах ДРЛ, ДНАТ и других, такие надписи как косинус фи — cos ϕ.

Однако люди далекие от электротехники и позабывшие школьные уроки физики, не совсем понимают, что же означает данный параметр и зачем он вообще нужен.

Давайте рассмотрим и объясним этот косинус, как можно более простыми словами, исключая всякие непонятные научные определения, типа электромагнитная индукция. В двух словах про него конечно не расскажешь, а вот в трех можно попробовать.

Когда ток отстает от напряжения

два проводника с потенциалом

Предположим перед вами есть 2 проводника. Один из этих проводников имеет потенциал. Не суть важно какой именно — отрицательный (минус) или положительный (плюс).

У другого провода вообще нет никакого потенциала. Соответственно между этими двумя проводниками будет разность потенциалов, т.к. у одного он есть, а у другого его нет.

Эту разность потенциалов как раз таки и принято называть напряжением.

напряжение это разность потенциалов

Если вы соедините кончики двух проводов не непосредственно между собой, а через лампочку накаливания, то через ее вольфрамовую нить начнет протекать ток. От одного провода к другому.

ток после включения лампочки возрастание

На первый взгляд может показаться, что лампочка загорается моментально. Однако это не так. Ток проходя через нить накала, будет нарастать от своего нулевого значения до номинального, какое-то определенное время.

постепенное возрастание тока после подключения прибора или лампочки

В какой-то момент он его достигает и держится на этом уровне постоянно. То же самое будет, если подключить не одну, а две, три лампочки и т.д.

катушка индуктивности и ее влияние на косинус фи

А что случится, если вместе с лампой последовательно включить катушку, намотанную из множества витков проволоки?

Изменится ли как-то процесс нарастания тока? Конечно, да.

сравнение графика нарастания силы тока с катушкой индуктивности в схеме и без нее

Данная катушка индуктивности, заметно затормозит время увеличения тока от нуля до максимума. Фактически получится, что максимальное напряжение (разность потенциалов) на лампе уже есть, а вот ток поспевать за ним не будет.

Его нарастание слишком медленное. Из-за чего это происходит и кто виноват? Виноваты витки катушки, которые оказывают влияние друг на друга и тормозят ток.

выбрось батарейку и ничего не будет

Если у вас напряжение постоянное, например как в аккумуляторах или в батарейках, ток относительно медленно, но все-таки успеет дорасти до своего номинального значения.

возрастание тока при постоянном напряжении

А далее, ток будет вместе с напряжением идти, что называется «нога в ногу».

синусоида переменного напряжения и косинус фи

А вот если взять напряжение из розетки, с переменной синусоидой, то здесь оно не постоянно и будет меняться. Сначала U какое-то время положительная величина, а потом — отрицательная, причем одинаковое по амплитуде. На рисунке это изображается в виде волны.

Эти постоянные колебания не дают нашему току, проходящему сквозь катушку, достигнуть своего установившегося значения и догнать таки напряжение. Только он будет подбираться к этой величине, а напряжение уже начинает падать.

запаздывание тока от напряжения

Поэтому в этом случае и говорят, что ток отстает от напряжения.

от чего зависит запаздывание тока от напряжения

Причем, чем больше в катушке намотано витков, тем большим будет это самое запаздывание.

Как же это все связано с косинусом фи — cos ϕ?

Что такое коэффициент мощности

один цикл синусоиды напряжения в 360 градусов

А связано это таким образом, что данное отставание тока измеряется углом поворота. Полный цикл синусоиды или волны, который она проходит от нуля до нуля, вместив в себя максимальное и минимальное значение, измеряется в градусах. И один такой цикл равен 360 градусов.

косинус фи на графике запаздывания тока от напряжения

А вот угол отставания тока от напряжения, как раз таки и обозначается греческой буквой фи. Значение косинуса этого угла опаздывания и есть тот самый cos ϕ.

значения косинуса фи в зависимости от градусов

Таким образом, чем больше ток отстает от напряжения, тем большим будет этот угол. Соответственно косинус фи будет уменьшаться.

графики синусоиды для ламп

По научному, ток сдвинутый от напряжения называется фазовым сдвигом. При этом почему-то многие уверены, что синусоида всегда идеальна. Хотя это далеко не так.

111_driver

В качестве примера можно взять импульсные блоки питания.

что такое коэффициент мощности и КНИ

Не идеальность синусоиды выражается коэфф. нелинейных искажений — КНИ. Если сложить две эти величины — cos ϕ и КНИ, то вы получите коэффициент мощности.

Однако, чтобы все не усложнять, чаще всего под понятием коэфф. мощности имеют в виду только лишь один косинус фи.

формула расчета косинуса фи коэффициента мощности

На практике, данный коэффициент мощности рассчитывают не при помощи угла сдвига фаз, а отношением активной мощности к полной.

Активная и реактивная мощность

что такое треугольник мощностей

Существует такое понятие как треугольник мощностей. Сам косинус — это тригонометрическая функция, которая и появилась при изучении свойств прямоугольных треугольников.

Она здорово помогает производить определенные вычисления с ними. Например, наглядно показывает отношение длин прилежащего катета (P-активная мощность) к гипотенузе (S-полная мощность).

То есть, зная угол сдвига, можно узнать, сколько активной мощности содержится в полной. Чем меньше этот угол, тем меньше реактивной составляющей находится в сети, и наоборот.

Только не путайте cos ϕ с КПД. Это разные понятия. Реактивная составляющая не расходуется, а «возвращается» на подстанцию в сеть, т.е. фактически потери ее нет. Только небольшая ее часть может тратиться на нагрев проводов.

как выбрать светодиодную лампу

В КПД все более четко — полезная мощность используется на нагрев — охлаждение — механическую работу, остальное уходит безвозвратно. Эта разница и показывается в КПД.

Более подробно, с графиками, рисунками и простыми словами, без особых научных формулировок обо всем этом говорится в ролике ниже.

Низкий коэффициент мощности и его последствия

Рассмотренное запаздывание тока относительно напряжения — это не хорошее явление. Как оно может сказаться на ваших лампочках или проводке?

  • во-первых, это повышенное потребление электроэнергии

на что влияет низкий коэффициент мощности

Часть энергии будет просто «болтаться» в катушке, при этом не принося никакой пользы. Правда не пугайтесь, ваш бытовой счетчик реактивную энергию не считает и платить вы за нее не будете.

что такое косинус мощности фи

Например, если вы включите в розетку инструмент или светильник с полной мощностью 100Ва, на блоке питания которого будет указано cos ϕ=0,5. То прибор учета накрутит вам только на половину от этой величины, то есть 50Вт.

Зато по проводам питания будет проходить вся нагрузка, разогревая их бесполезной работой.

  • величина тока в проводке увеличится

Вот известное наглядное видео, демонстрирующее последствия этого для проводки.

  • для эл.станций и трансформаторов оно вредно перегрузкой

Казалось бы, выбрось катушку и вся проблема исчезнет. Однако делать этого нельзя.

откуда берется в лампах косинус фи

В большинстве светильников, лампы работают не отдельно, а в паре с источниками питания. И в этих самых источниках, как раз таки присутствуют разнообразные катушки.

111_DNaT

Катушки просто необходимы как функциональная часть всей схемы и избавиться от них не получится. Например в тех же дроссельных лампах ДРЛ, ДНАТ, люминесцентных и т.п.

значения параметра косинуса фи

Поэтому характеристика коэфф. мощности, здесь больше относится к блоку питания, нежели к самой лампе. Данный cos ϕ может принимать значение от ноля до единицы.

Ноль означает, что полезная работа не совершается. Единица — вся энергия идет на совершение полезной работы.

Чем выше коэффициент мощности, тем ниже потери электроэнергии. Вот таблица косинуса фи для различных потребителей:таблица значений косинуса фи для разных потребителейтаблица значений косинуса мощности для разных приборов и оборудования

Как измерить коэффициент мощности

прибор для измерения коэффициента мощности

Если вы не знаете точный коэфф. мощности своего прибора, или его нет на бирке, можно ли измерить косинус фи в домашних условиях, не прибегая к различным формулам и вычислениям? Конечно можно.

измерение коэффициента мощности косинус фи цифровым ваттметром

Для этого достаточно приобрести широко распространенный инструмент — цифровой ваттметр в розетку.

Подключая любое оборудование через него, можно легко без замеров и сложных вычислений, узнать фактический cos ϕ.

цифровой бытовой ваттметр

Зачастую, фактические данные могут быть даже точнее, чем написанные на шильдике, которые рассчитаны для идеальных условий.

Если он слишком низкий, что делать, чтобы привести его значение как можно ближе к единице? Можно это дело определенным образом компенсировать. Например, с помощью конденсаторов.

Однако это тема совсем другой статьи.

Как измерить коэффициент мощности

Как измерить коэффициент мощности

Для измерения косинус фи лучше всего иметь специальные приборы, предназначенные для непосредственного его измерения — фазометры.

Фазометр — электроизмерительный прибор, предназначенный для измерения углов сдвига фаз между двумя изменяющимися периодически электрическими колебаниями.

Если таких приборов нет, то измерять коэффициент мощности можно косвенным методом . Например, в однофазной сети косинус фи можно определить по показаниям амперметра, вольтметра и ваттметра:

cos фи = P / (U х I), где Р, U, I — показания приборов.

в цепи трехфазного тока cos фи = P w / ( √ 3 х Uл х Iл)

где Pw — мощность всей системы, Uл, Iл — линейные напряжение и ток, измеренные вольтметром и амперметром.

В симметричной трехфазной цепи значение косинус фи можно определить из показаний двух ваттметров P w 1 и P w 2 по формуле

Общая относительная погрешность рассмотренных методов равна сумме относительных погрешностей каждого прибора, поэтому точность косвенных методов невелика.

Численное значение косинус фи зависит от характера нагрузки. Если нагрузкой являются лампы накаливания и нагревательные приборы, то косинус фи = 1, если нагрузка содержит еще и асинхронные электродвигатели, то косинус фи

Поэтому на практике в электрических сетях определяют так называемый средневзвешенный коэффициент мощности за какое-то определенное время, допустим, за сутки или месяц. Для этого в конце рассматриваемого периода снимают показания счетчиков активной и реактивной энергии Wa и Wv и определяют средневзвешенное значение коэффициента мощности по формуле

Это значение средневзвешенного коэффициента мощности желательно иметь в электрических сетях равным 0,92 — 0,95.

Как измерить коэффициент мощности

Использование фазометра для измерения коэффициента мощности

Измерить непосредственно фазовый сдвиг между напряжением и током нагрузки можно при помощи специальных измерительных приборов — фазометров .

Наибольшее распространение получили фазометры электродинамической системы , в которых неподвижная катушка включена последовательно с нагрузкой, а подвижные катушки — параллельно нагрузке, так, что ток одной из них отстает от напряжения на угол β1. Для этого последовательно с катушкой включена активно-индуктивная нагрузка, а ток другой опережает напряжение на некоторый угол β2 , для чего включена активно-емкостная нагрузка, причем β1 + β2 = 90 о

Схема включения фазометра (а) и векторная диаграмма напряжений и токов

Рис. 1. Схема включения фазометра (а) и векторная диаграмма напряжений и токов (б).

Угол отклонения стрелки такого прибора зависит только от значения косинуса фи.

фазометр

Для измерения фазового сдвига между двумя напряжениями часто применяют цифровые фазометры . В цифровых фазометрах прямого преобразования для измерения фазового сдвига его преобразуют в интервал времени и измеряют последний. Исследуемые напряжения подают на два входа прибора, на цифровом отсчетном устройстве прибора снимают показания числа импульсов, поступающих на счетчик прибора за один период исследуемых напряжений, которое соответствует фазовому сдвигу в градусах (или в долях градуса).

Из щитовых приборов, предназначенных для измерения, наиболее простой фазометр типа Д31, который может работать в однофазных сетях переменного тока с частотой 50, 500, 1000, 2400, 8000 Гц. Класс точности 2,5. Пределы измерений косинуса фи от 0,5 емкостного фазового сдвига до 1 и от 1 до 0,5 индуктивного фазового сдвига. Фазометры включают через измерительные трансформаторы тока с вторичным током 5 А и измерительные трансформаторы напряжения с вторичным напряжением 100 В.

Для измерения косинуса фи в трехфазной сети при симметричной нагрузке можно применять щитовые фазометры типа Д301. Класс их точности 1,5. Последовательные цепи включают на ток 5 А непосредственно, а также через трансформатор тока, параллельные цепи включают непосредственно на 127, 220, 380 В, а также через измерительные трансформаторы напряжения.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Как найти угол фи

ФОРМУЛЫ ПРИВЕДЕНИЯ.

Теорема. Для любого угла φ

sin (90° — φ) = cosφ. (1)

Доказательство. Если угол φ оканчивается в 1-й четверти, то угол 90° + φ должен оканчиваться во 2-й четверти. Используя единичный круг, получаем:

sin (90° + φ) = BD, cos φ = ОС.

Но треугольники ОАС и BOD равны; поэтому BD = ОС. Отсюда и вытекает равенство (1).

Если угол φ оканчивается во 2-й четверти, то угол 90° +φ должен оканчиваться в 3-й четверти. Используя единичный круг, получаем:

sin (90°+φ) = — BD, cos φ = —ОС.

Треугольники ОАС и BOD равны; поэтому BD = ОС. Следовательно, —BD = —ОС, или sin (90° +φ) = cos φ.

Аналогично можно рассмотреть случаи, когда угол φ оканчивается в 3-й или в 4-й четверти. Тождество (1) легко проверить и в случае, когда конечная сторона угла φ лежит на какой-нибудь оси координат. Предлагаем учащимся самостоятельно убедиться в этом.

Из доказанного тождества (1) вытекает ряд других важных тождеств. Заменив в (1) φ на — φ, получаем:

sin (90° — φ) = cos (—φ) = cos φ. (2)

Чтобы получить аналогичную формулу для cos (90° — φ), заменим в (2) φ на 90° — φ. В результате получаем:

или sin [90° — (90° — φ)] = cos (90° — φ),

Итак, sin φ = cos (90° — φ).

cos (90° — φ) = sin φ. (3)

Из (2) и (3) вытекает:

tg (90° — φ) = ctg φ. . (4)

sin (90° — φ) = cos φ, tg (90° — φ) == ctg φ,

cos (90° — φ) = sin φ, ctg (90° — φ) = tg φ.

иногда называют формулами дополнительного угла. Это связано с тем, что углы 90° — φ и φ дополняют друг друга до прямого угла. Эти формулы очень просто запомнить: одна функция заменяется на другую, сходную с ней (синус на косинус, косинус на синус, тангенс на котангенс, котангенс на тангенс).

Например, sin 40° = cos 50°; tg 70° = ctg 20° и т. д.

Теперь получим формулы для угла 90° + φ. Одну из таких формул мы уже доказали выше:

sin (90° + φ) = cos φ.

Остальные формулы легко получаются из формул дополнительного угла и свойства четности (нечетности) тригонометрических функций. Имеем:

cos (90° + φ) = cos [90° — (— φ)] = sin (— φ) = —sin φ;

tg (90° + φ) = tg [90°— (— φ)] = ctg(— φ) = —ctg φ;

ctg (90° + φ) = ctg [90° — (— φ)] = tg (— φ) = — tg φ.

Исходя из этих формул, можно получить формулы для углов 180° ± φ. Например,

sin (180° + φ) = sin [90° + (90°+ φ)] = cos (90° + φ) = —sin φ;

sin (180° — φ) = sin [90° + (90° — φ)] = cos (90° — φ) = sin φ.

Аналогично доказываются формулы

cos (180° + φ) = — cos φ; cos (180° — φ) = — cos φ.

Чтобы получить соответствующие формулы для тангенса и котангенса, можно воспользоваться выведенными соотношениями

для синуса и косинуса, учитывая, что tg φ = sin φ /cos φ, ctg φ = cos φ /sin φ.

Однако в данном случае лучше всего исходить из того, что угол 180° является периодом функций tg φ и ctg φ. Отсюда сразу же получаем:

tg (180° + φ) = tg φ,

tg (180° — φ) == tg (—φ) = — tg φ,

ctg (180° + φ) = ctg φ,

ctg (180° — φ) = ctg (— φ) = — ctg φ.

Из формул для углов 180° ± φ можно получить аналогичные формулы для углов 270° ± φ.

Формулы для углов 360° ± φ легко получаются, если учесть, что угол 360° является общим периодом тригонометрических функций. Подробно останавливаться на этом мы не будем. В таблице приведены нужные нам формулы.

sin х

cos x

tg x

ctg x

90° — φ ( π /2φ)

90° + φ ( π /2 + φ)

180°φ (π — φ)

180° + φ (π + φ)

270° — φ (π — φ)

270° + φ (π + φ)

360°φ (2π — φ)

360° + φ (2π + φ)

Заучивать эти формулы нет нужды. Достаточно помнить следующее:

1) если в формуле содержатся углы 180° и 360° (π и 2π), то наименование функции не изменяется;

если же в формуле содержатся углы 90° и 270° ( π /2 и 3π /2), то наименование функции меняется на сходное (синус на косинус, тангенс на котангенс и т. д.);

2) чтобы определить знак в правой части формулы (+ или—), достаточно, считая угол φ острым, определить знак выражения, стоящего в левой части формулы.

Пусть, например, нужно определить tg (90° + φ). Прежде всего мы замечаем, что в формуле содержится угол 90°. Поэтому в правой части искомой формулы должен стоять ctg φ.
Чтобы определить знак перед ctg φ, предположим, что угол φ острый. Тогда угол 90° + φ должен оканчиваться во 2-й четверти. Но тангенс угла, оканчивающегося во 2-й четверти, отрицателен. Поэтому перед ctg φ нужно взять знак —.

tg (90° + φ) = — ctg φ.

Аналогично устанавливается формула

cos (180° — φ) = — cos φ.

Поскольку в формуле содержится угол в 180°, наименование функции не изменяется. Если угол φ острый, то угол 180°—φ должен оканчиваться во 2-й четверти. Но косинус угла, оканчивающегося во 2-й четверти, отрицателен. Поэтому в правой части формулы должен стоять знак —.

Полученные выше формулы носят название формул приведения. Причины такого названия будут выяснены далее.

Упражнения

1.Упростить выражения

2. Доказать, что если прямые у = k1x и у = k2x взаимно перпендикулярны, то k1k2 = — 1.
3. tg x = 3. Чему равен тангенс дополнительного угла?
4. sin φ = 0,6. Чему равен синус дополнительного угла?
5. Что больше:

6.Упростить выражения

7. Доказать тождества

8. Доказать, что синус суммы двух углов треугольника равен синусу третьего угла.
9. 1) Доказать, что площадь любого четырехугольника равна половине произведения его диагоналей на синус угла между ними.
2) Доказать, что из всех прямоугольников с данной диагональю наибольшую площадь имеет квадрат.
3) Какой четырехугольник с диагоналями d1 и d2 имеет максимальную площадь?

10. Что больше:

а) sin 26° или cos 40°; в) sin 0,63 или cos 0,87 ;

б) tg57° или ctg20°; г) tg 3 /8 π или ctg 5 /16 π? .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *