Как найти центр эллипса
Перейти к содержимому

Как найти центр эллипса

  • автор:

Эллипс. Формулы, признаки и свойства эллипсa

Эллипс — это замкнутая плоская кривая, сумма расстояний от каждой точки которой до двух точек F1 и F2 равна постоянной величине. Точки F1 и F2 называют фокусами эллипса.

рисунок эллипсa рисунок эллипсa
Рис.1 Рис.2

Элементы эллипсa

F1 и F2фокусы эллипсa
Оси эллипсa.

А1А2 = 2 a — большая ось эллипса (проходит через фокусы эллипса)

B1B2 = 2 b — малая ось эллипса (перпендикулярна большей оси эллипса и проходит через ее центр)

a — большая полуось эллипса

b — малая полуось эллипса

O — центр эллипса (точка пересечения большей и малой осей эллипса)

Вершины эллипсa A1, A2, B1, B2 — точки пересечения эллипсa с малой и большой осями эллипсa
Диаметр эллипсa — отрезок, соединяющий две точки эллипса и проходящий через его центр.
Фокальное расстояние c — половина длины отрезка, соединяющего фокусы эллипсa.

Эксцентриситет эллипсa e характеризует его растяженность и определяется отношением фокального расстояния c к большой полуоси a . Для эллипсa эксцентриситет всегда будет 0 < e < 1, для круга e = 0, для параболы e = 1, для гиперболы e >1.

Фокальные радиусы эллипсa r 1, r 2 — расстояния от точки на эллипсе до фокусов.
Радиус эллипсa R — отрезок, соединяющий центр эллипсa О с точкой на эллипсе.

R =

ab = b
√ a 2 sin 2 φ + b 2 cos 2 φ √ 1 — e 2 cos 2 φ

где e — эксцентриситет эллипсa, φ — угол между радиусом и большой осью A1A2.

Фокальный параметр эллипсa p — отрезок который выходит из фокуса эллипсa и перпендикулярный большой полуоси:

Коэффициент сжатия эллипсa (эллиптичность) k — отношение длины малой полуоси к большой полуоси. Так как малая полуось эллипсa всегда меньше большей, то k < 1, для круга k = 1:

где e — эксцентриситет.

Сжатие эллипсa (1 — k ) — величина, которая равная разности между единицей и эллиптичностью:

1 — k =

a — b
a

Директрисы эллипсa — две прямые перпендикулярные фокальной оси эллипса, и пересекающие ее на расстоянии a e от центра эллипса. Расстояние от фокуса до директрисы равно p e .

Основные свойства эллипсa

1. Угол между касательной к эллипсу и фокальным радиусом r 1 равен углу между касательной и фокальным радиусом r 2 (Рис. 2, точка М3).

2. Уравнение касательной к эллипсу в точке М с координатами ( x M, y M):

1 = x x M + y y M
a 2 b 2

3. Если эллипс пересекается двумя параллельными прямыми, то отрезок, соединяющий середины отрезков образовавшихся при пересечении прямых и эллипса, всегда будет проходить через центр эллипсa. (Это свойство дает возможность построением с помощью циркуля и линейки получить центр эллипса.)

4. Эволютой эллипсa есть астероида, что растянута вдоль короткой оси.

5. Если вписать эллипс с фокусами F1 и F2 у треугольник ∆ ABC, то будет выполнятся следующее соотношение:

1 = F1A ∙ F2A + F1B ∙ F2B + F1C ∙ F2C
CA ∙ AB AB ∙ BC BC ∙ CA

Уравнение эллипсa

Каноническое уравнение эллипсa:

Уравнение описывает эллипс в декартовой системе координат. Если центр эллипсa О в начале системы координат, а большая ось лежит на абсциссе, то эллипсa описывается уравнением:

1 = x 2 + y 2
a 2 b 2

Если центр эллипсa О смещен в точку с координатами ( xo , yo ), то уравнение:

1 = ( x — xo ) 2 + ( y — yo ) 2
a 2 b 2

Параметрическое уравнение эллипсa:

{ x = a cos α де 0 ≤ α < 2 π
y = b sin α

Радиус круга вписанного в эллипс

Круг, вписан в эллипс касается только двух вершин эллипсa B1 и B2. Соответственно, радиус вписанного круга r будет равен длине малой полуоси эллипсa OB1:
r = b

Радиус круга описанного вокруг эллипсa

Круг, описан вокруг эллипсa касается только двух вершин эллипсa A1 и A2. Соответственно, радиус описанного круга R будет равен длине большой полуоси эллипсa OA1:
R = a

Площадь эллипсa

Формула определение площади эллипсa:
S = πab

Площадь сегмента эллипсa

Формула площади сегмента, что находится по левую сторону от хорды с координатами ( x , y ) и ( x , -y ):

S = πab b ( x a 2 — x 2 + a 2 ∙ arcsin x )
2 a a

Периметр эллипсa

Найти точную формулу периметра эллипсa L очень тяжело. Ниже приведена формула приблизительной длины периметра. Максимальная погрешность этой формулы ~0,63 %:

L ≈ 4 πab + ( a — b ) 2
a + b

Длина дуги эллипсa

Формулы определения длины дуги эллипсa:

1. Параметрическая формула определения длины дуги эллипсa через большую a и малую b полуоси:

t 2
l = √ a 2 sin 2 t + b 2 cos 2 t dt
t 1

2. Параметрическая формула определения длины дуги эллипсa через большую полуось a и эксцентриситет e :

t 2
l = √ 1 — e 2 cos 2 t dt, e < 1
t 1

3.3.2. Определение эллипса. Фокусы эллипса

Эллипс – это частный случай овала, и его строгое определение таково:

Эллипс – это множество всех точек плоскости, сумма расстояний от каждой из которых до двух данных точек , называемых фокусами эллипса, равна длине большой оси: . При этом расстояния между фокусами меньше этого значения .

Сейчас станет понятнее:

Представьте, что синяя точка «ездит» по эллипсу. Так вот, какую бы точку эллипса мы ни взяли, сумма длин отрезков всегда будет одной и той же:

Убедимся, что в нашем примере значение суммы будет равно 8. Мысленно поместите точку «эм» в правую вершину эллипса, где хорошо видно, что:

На определении эллипса основан ещё один способ его вычерчивания. Пожалуйста, возьмите ватман либо большой лист картона и приколотите его к столу двумя гвоздиками. Это будут фокусы . К торчащим шляпкам гвоздей привяжите зелёную нитку и до упора оттяните её карандашом. Гриф карандаша окажется в некоторой точке , которая принадлежит эллипсу. Теперь начинайте вести карандаш по листу бумаги, сохраняя зелёную нить сильно натянутой. Продолжайте процесс до тех пор, пока не вернётесь в исходную точку…, отлично! – чертёж можно сдать на проверку врачу преподавателю =)

Как найти фокусы эллипса?

В приведённом примере я изобразил «готовенькие» точки фокуса, и сейчас мы научимся добывать их из недр фигуры.

Если эллипс задан каноническим уравнением , то его фокусы имеют координаты , где – это расстояние от каждого из фокусов до центра симметрии эллипса.

Вычисления простецкие:
, таким образом:

Внимание! Со значением нельзя отождествлять конкретные координаты фокусов! Повторюсь, что это РАССТОЯНИЕ от каждого из фокусов до центра (который в общем случае не обязан располагаться именно в начале координат). Иными словами, эллипс можно перенести в другое место и значение останется неизменным, в то время как фокусы, естественно, поменяют свои координаты.

Автор: Aлeксaндр Eмeлин

Линии второго порядка.
Эллипс и его каноническое уравнение. Окружность

После основательной проработки прямых на плоскости продолжаем изучать геометрию двухмерного мира. Ставки удваиваются, и я приглашаю вас посетить живописную галерею эллипсов, гипербол, парабол, которые являются типичными представителями линий второго порядка. Экскурсия уже началась, и сначала краткая информация обо всей экспозиции на разных этажах музея:

Понятие алгебраической линии и её порядка

Линию на плоскости называют алгебраической, если в аффинной системе координат её уравнение имеет вид , где – многочлен, состоящий из слагаемых вида ( – действительное число, – целые неотрицательные числа).

Как видите, уравнение алгебраической линии не содержит синусов, косинусов, логарифмов и прочего функционального бомонда. Только «иксы» и «игреки» в целых неотрицательных степенях.

Далее под словом «линия» по умолчанию будет подразумеваться алгебраическая линия на плоскости

Порядок линии равен максимальному значению входящих в него слагаемых.

По соответствующей теореме, понятие алгебраической линии, а также её порядок не зависят от выбора аффинной системы координат, поэтому для лёгкости бытия считаем, что все последующие выкладки имеют место быть в декартовых координатах .

Общее уравнение линии второго порядка имеет вид , где – произвольные действительные числа ( принято записывать с множителем-«двойкой»), причём коэффициенты не равны одновременно нулю.

Если , то уравнение упрощается до , и если коэффициенты одновременно не равны нулю, то это в точности общее уравнение «плоской» прямой, которая представляет собой линию первого порядка.

Многие поняли смысл новых терминов, но, тем не менее, в целях 100%-го усвоения материала сунем пальцы в розетку. Чтобы определить порядок линии, нужно перебрать все слагаемые её уравнения и у каждого из них найти сумму степеней входящих переменных.

слагаемое содержит «икс» в 1-й степени;
слагаемое содержит «игрек» в 1-й степени;
в слагаемом переменные отсутствуют, поэтому сумма их степеней равна нулю.

Далее из полученных чисел выбирается максимальное значение, в данном случае единица, – это и есть порядок линии.

Теперь разберёмся, почему уравнение задаёт линию второго порядка:

слагаемое содержит «икс» во 2-й степени;
у слагаемого сумма степеней переменных: 1 + 1 = 2;
слагаемое содержит «игрек» во 2-й степени;
все остальные слагаемые – меньшей степени.

Максимальное значение: 2

Если к нашему уравнению дополнительно приплюсовать, скажем, , то оно уже будет определять линию третьего порядка. Очевидно, что общий вид уравнения линии 3-го порядка содержит «полный комплект» слагаемых, сумма степеней переменных в которых равна трём:
, где коэффициенты не равны одновременно нулю.

В том случае, если добавить одно или несколько подходящих слагаемых, которые содержат , то речь уже зайдёт о линии 4-го порядка, и т.д.

С алгебраическими линиями 3-го, 4-го и более высоких порядков нам придется столкнуться ещё не раз, в частности, при знакомстве с полярной системой координат.

Однако вернёмся к общему уравнению и вспомним его простейшие школьные вариации. В качестве примеров напрашивается парабола , уравнение которой легко привести к общему виду , и гипербола с эквивалентным уравнением . Однако не всё так гладко….

Существенный недостаток общего уравнения состоит в том, что почти всегда не понятно, какую линию оно задаёт. Даже в простейшем случае не сразу сообразишь, что это гипербола. Такие расклады хороши только на маскараде, поэтому в курсе аналитической геометрии рассматривается типовая задача приведения уравнения линии 2-го порядка к каноническому виду.

Что такое канонический вид уравнения?

Это общепринятый стандартный вид уравнения, когда в считанные секунды становится ясно, какой геометрический объект оно определяет. Кроме того, канонический вид очень удобен для решения многих практических заданий. Так, например, по каноническому уравнению «плоской» прямой, во-первых, сразу понятно, что это прямая, а во-вторых – элементарно просматривается принадлежащая ей точка и направляющий вектор .

Очевидно, что любая линия 1-го порядка представляет собой прямую. На втором же этаже нас ждёт уже не вахтёр, а гораздо более разнообразная компания из девяти статуй:

Классификация линий второго порядка

С помощью специального комплекса действий любое уравнение линии второго порядка приводится к одному из следующих видов:

( и – положительные действительные числа)

1) – каноническое уравнение эллипса;

2) – каноническое уравнение гиперболы;

3) – каноническое уравнение параболы;

4) – мнимый эллипс;

5) – пара пересекающихся прямых;

6) – пара мнимых пересекающихся прямых (с единственной действительной точкой пересечения в начале координат);

7) – пара параллельных прямых;

8) – пара мнимых параллельных прямых;

9) – пара совпавших прямых.

У ряда читателей может сложиться впечатление неполноты списка. Например, в пункте № 7 уравнение задаёт пару прямых , параллельных оси , и возникает вопрос: а где же уравнение , определяющее прямые , параллельные оси ординат? Ответ: оно не считается каноническим. Прямые представляют собой тот же самый стандартный случай , повёрнутый на 90 градусов, и дополнительная запись в классификации избыточна, поскольку не несёт ничего принципиально нового.

Таким образом, существует девять и только девять различных видов линий 2-го порядка, но на практике наиболее часто встречаются эллипс, гипербола и парабола.

Сначала рассмотрим эллипс. Как обычно, я акцентирую внимание на тех моментах, которые имеют большое значение для решения задач, и если вам необходим подробный вывод формул, доказательства теорем, пожалуйста, обратитесь, например, к учебнику Базылева/Атанасяна либо Александрова.

Эллипс и его каноническое уравнение

Правописание… пожалуйста, не повторяйте ошибок некоторых пользователей Яндекса, которых интересует «как построить эллибз», «отличие элипса от овала» и «эксцентриситет элебса».

Каноническое уравнение эллипса имеет вид , где – положительные действительные числа, причём . Само определение эллипса я сформулирую позже, а пока самое время отдохнуть от говорильни и решить распространённую задачу:

Как построить эллипс?

Да, вот взять его и просто начертить. Задание встречается часто, и значительная часть студентов не совсем грамотно справляются с чертежом:

Построить эллипс, заданный уравнением

Решение: сначала приведём уравнение к каноническому виду:

Зачем приводить? Одно из преимуществ канонического уравнения заключается в том, что оно позволяет моментально определить вершины эллипса, которые находятся в точках . Легко заметить, что координаты каждой из этих точек удовлетворяют уравнению .

Каноническое расположение эллипса

В данном случае :

Отрезок называют большой осью эллипса;
отрезокмалой осью;
число называют большой полуосью эллипса;
числомалой полуосью.
в нашем примере: .

Чтобы быстро представить, как выглядит тот или иной эллипс достаточно посмотреть на значения «а» и «бэ» его канонического уравнения.

Всё ладно, складно и красиво, но есть один нюанс: я выполнил чертёж с помощью программы. И вы можете выполнить чертёж с помощью какого-либо приложения. Однако в суровой действительности на столе лежит клетчатый листок бумаги, и на наших руках водят хороводы мыши. Люди с художественным талантом, конечно, могут поспорить, но мыши есть и у вас тоже (правда, поменьше). Таки не зря человечество изобрело линейку, циркуль, транспортир и другие нехитрые приспособления для черчения.

По этой причине нам вряд ли удастся аккуратно начертить эллипс, зная одни вершины. Ещё куда ни шло, если эллипс небольшой, например, с полуосями . Как вариант, можно уменьшить масштаб и, соответственно, размеры чертежа. Но в общем случае крайне желательно найти дополнительные точки.

Существует два подхода к построению эллипса – геометрический и алгебраический. Построение с помощью циркуля и линейки мне не нравится по причине не самого короткого алгоритма и существенной загроможденности чертежа. В случае крайней необходимости, пожалуйста, обратитесь к учебнику, а в реальности же гораздо рациональнее воспользоваться средствами алгебры. Из уравнения эллипса на черновике быстренько выражаем:

Далее уравнение распадается на две функции:
– определяет верхнюю дугу эллипса;
– определяет нижнюю дугу эллипса.

Заданный каноническим уравнением эллипс симметричен относительно координатных осей, а также относительно начала координат. И это отлично – симметрия почти всегда предвестник халявы. Очевидно, что достаточно разобраться с 1-й координатной четвертью, поэтому нам потребуется функция . Напрашивается нахождение дополнительных точек с абсциссами . Настукаем три смс-ки на калькуляторе:

Безусловно, приятно и то, что если допущена серьёзная ошибка в вычислениях, то это сразу выяснится в ходе построения.

Построение эллипса алгебраическим методом с помощью дополнительных точек

Отметим на чертеже точки (красный цвет), симметричные точки на остальных дугах (синий цвет) и аккуратно соединим линией всю компанию:

Первоначальный набросок лучше прочертить тонко-тонко, и только потом придать нажим карандашу. В результате должен получиться вполне достойный эллипс. Кстати, не желаете ли узнать, что это за кривая?

Определение эллипса. Фокусы эллипса и эксцентриситет эллипса

Эллипс – это частный случай овала. Слово «овал» не следует понимать в обывательском смысле («ребёнок нарисовал овал» и т.п.). Это математический термин, имеющий развёрнутую формулировку. Целью данного урока не является рассмотрение теории овалов и различных их видов, которым практически не уделяется внимания в стандартном курсе аналитической геометрии. И, в соответствии с более актуальными потребностями, мы сразу переходим к строгому определению эллипса:

Эллипс – это множество всех точек плоскости, сумма расстояний до каждой из которых от двух данных точек , называемых фокусами эллипса, – есть величина постоянная, численно равная длине большой оси этого эллипса: .
При этом расстояния между фокусами меньше данного значения: .

Иллюстрация определения эллипса

Сейчас станет всё понятнее:

Представьте, что синяя точка «ездит» по эллипсу. Так вот, какую бы точку эллипса мы ни взяли, сумма длин отрезков всегда будет одной и той же:

Убедимся, что в нашем примере значение суммы действительно равно восьми. Мысленно поместите точку «эм» в правую вершину эллипса, тогда: , что и требовалось проверить.

На определении эллипса основан ещё один способ его вычерчивания. Высшая математика, порой, причина напряжения и стресса, поэтому самое время провести очередной сеанс разгрузки. Пожалуйста, возьмите ватман либо большой лист картона и приколотите его к столу двумя гвоздиками. Это будут фокусы . К торчащим шляпкам гвоздей привяжите зелёную нитку и до упора оттяните её карандашом. Гриф карандаша окажется в некоторой точке , которая принадлежит эллипсу. Теперь начинайте вести карандаш по листу бумаги, сохраняя зелёную нить сильно натянутой. Продолжайте процесс до тех пор, пока не вернётесь в исходную точку… отлично… чертёж можно сдать на проверку врачу преподавателю =)

Как найти фокусы эллипса?

В приведённом примере я изобразил «готовенькие» точки фокуса, и сейчас мы научимся добывать их из недр геометрии.

Если эллипс задан каноническим уравнением , то его фокусы имеют координаты , где – это расстояние от каждого из фокусов до центра симметрии эллипса.

Вычисления проще пареной репы:

! Со значением «цэ» нельзя отождествлять конкретные координаты фокусов! Повторюсь, что – это РАССТОЯНИЕ от каждого из фокусов до центра (который в общем случае не обязан располагаться именно в начале координат).
И, следовательно, расстояние между фокусами тоже нельзя привязывать к каноническому положению эллипса. Иными словами, эллипс можно перенести в другое место и значение останется неизменным, в то время как фокусы, естественно, поменяют свои координаты. Пожалуйста, учитывайте данный момент в ходе дальнейшего изучения темы.

Эксцентриситет эллипса и его геометрический смысл

Эксцентриситетом эллипса называют отношение , которое может принимать значения в пределах .

Выясним, как форма эллипса зависит от его эксцентриситета. Для этого зафиксируем левую и правую вершины рассматриваемого эллипса, то есть, значение большой полуоси будет оставаться постоянным. Тогда формула эксцентриситета примет вид: .

Начнём приближать значение эксцентриситета к единице. Это возможно только в том случае, если . Что это значит? …вспоминаем про фокусы . Это значит, что фокусы эллипса будут «разъезжаться» по оси абсцисс к боковым вершинам. И, поскольку «зелёные отрезки не резиновые», то эллипс неизбежно начнёт сплющиваться, превращаясь всё в более и более тонкую сосиску, нанизанную на ось .

Таким образом, чем ближе значение эксцентриситета эллипса к единице, тем эллипс более продолговат.

Теперь смоделируем противоположный процесс: фокусы эллипса пошли навстречу друг другу, приближаясь к центру. Это означает, что значение «цэ» становится всё меньше и, соответственно, эксцентриситет стремится к нулю: .
При этом «зелёным отрезкам» будет, наоборот – «становиться тесно» и они начнут «выталкивать» линию эллипса вверх и вниз.

Таким образом, чем ближе значение эксцентриситета к нулю, тем эллипс больше похож на… смотрим предельный случай , когда фокусы успешно воссоединились в начале координат:

Окружность – частный случай эллипса

Окружность – это частный случай эллипса

Действительно, в случае равенства полуосей каноническое уравнение эллипса принимает вид , который рефлекторно преобразуется к – хорошо известному из школы уравнению окружности с центром в начале координат радиуса «а».

На практике чаще используют запись с «говорящей» буквой «эр»: . Радиусом называют длину отрезка , при этом каждая точка окружности удалена от центра на расстояние радиуса.

Заметьте, что определение эллипса остаётся полностью корректным: фокусы совпали , и сумма длин совпавших отрезков для каждой точки окружности – есть величина постоянная. Так как расстояние между фокусами , то эксцентриситет любой окружности равен нулю.

Строится окружность легко и быстро, достаточно вооружиться циркулем. Тем не менее, иногда бывает нужно выяснить координаты некоторых её точек, в этом случае идём знакомым путём – приводим уравнение к бодрому матановскому виду:

– функция верхней полуокружности;
– функция нижней полуокружности.

После чего находим нужные значения, дифференцируем, интегрируем и делаем другие хорошие вещи.

Статья, конечно, носит справочный характер, но как на свете без любви прожить? Творческое задание для самостоятельного решения

Составить каноническое уравнение эллипса, если известен один из его фокусов и малая полуось (центр находится в начале координат). Найти вершины, дополнительные точки и изобразить линию на чертеже. Вычислить эксцентриситет.

Решение и чертёж в конце урока

Поворот и параллельный перенос эллипса

Вернёмся к каноническому уравнению эллипса , а именно, к условию , загадка которого терзает пытливые умы ещё со времён первого упоминания о данной кривой. Вот мы рассмотрели эллипс , но разве на практике не может встретиться уравнение ? Ведь здесь , однако, это вроде бы как тоже эллипс!

Поворот эллипса на 90 градусов

Подобное уравнение нечасто, но действительно попадается. И оно действительно определяет эллипс. Развеем мистику:

В результате построения получен наш родной эллипс, повёрнутый на 90 градусов. То есть, – это неканоническая запись эллипса . Запись! – уравнение не задаёт какой-то другой эллипс, поскольку на оси не существует точек (фокусов), которые бы удовлетворяли определению эллипса.

Как быть, если такое чудо-яйцо всё-таки встретилось на жизненном пути? В том случае если вам предложено построить эллипс, то, наверное, лучше построить его в нестандартном виде. С вершинами и дополнительными точками, думаю, трудностей не возникнет. Но если вам предложено найти фокусы, эксцентриситет и т.д., то настоятельно рекомендую начать (или продолжить после чертежа) решение так:

«Повернём эллипс на 90 градусов и перепишем его уравнение в каноническом виде: » – дальше по обычной схеме.

! Примечание: в теории принято поворачивать не саму фигуру, а оси! И если от вас требуется именно ПРИВЕСТИ уравнение к каноническому виду, то решение, строго говоря, следует оформить иначе: «Перейдём к новой прямоугольной системе координат , повернув координатные оси на 90 градусов против часовой стрелки, и запишем уравнение эллипса в каноническом виде: ».

Впрочем, эрудиты могут встать на скользкую дорожку путаницы, модифицировав все расчёты с учётом поворота. Но всё равно не советую. Потому что ребячество. Ведь эллипс можно повернуть и на другой угол =) Об этом мы ещё поговорим позже.

В практических задачах гораздо чаще встречается параллельный перенос эллипса:

Уравнение задаёт эллипс с большой полуосью «а», малой полуосью «бэ» и центром симметрии в точке .

Параллельный перенос эллипса

Изобразим на чертеже эллипс . Согласно формуле: , то есть наш подопытный эллипс «переехал» в точку :

Значения остались прежними, а вот фокусы, разумеется, мигрировали, и формулы их координат нужно модифицировать поправками на соответствующие сдвиги:

Здесь всё обходится значительно проще, чем при повороте, и если по условию не нужно приводить уравнение к каноническому виду, то лично я предпочту оставить его в виде . Что делать, если нужно приводить? «Чайникам» в большинстве случаев простят фразу: «Осуществим параллельный перенос эллипса в начало координат и перепишем уравнение в каноническом виде: ». Но академический подход предполагает параллельный перенос не самой фигуры, а системы координат! Поэтому людям, изучающим высшую математику по профилю и/или углублённо, гораздо лучше завернуть примерно следующее: «С помощью параллельного переноса исходной системы координат перейдём к новой прямоугольной системе координат с началом в точке и запишем уравнение эллипса в каноническом виде ».

На самом деле упрощенная версия формулы нам знакома ещё со школьных времён:

Уравнение задаёт окружность радиуса с центром в точке .

Параллельный перенос окружности

Освежая ностальгические воспоминания, изобразим на чертеже окружность, заданную уравнением :

В исследовательских целях приведём наше уравнение к общему виду, выполнив возведение в квадрат и приведение подобных слагаемых:

– как правило, в таком обличье оно и встречается в природе.

Таким образом, в практических задачах часто предварительно нужно выполнить обратное действие – выделить полные квадраты. Данный приём подробно разобран на уроках о геометрических преобразованиях графиков и интегрировании дробей. Хотя следующий простой пример не должен вызвать у вас затруднений даже без отработки данного метода:

Построить график линии, заданной уравнением

Решение и чертёж в конце урока.

На практике эллипс (как и другие линии) может быть одновременно повёрнут на любой угол относительно своего канонического положения и перенесен в любую точку, отличную от начала координат. В таком случае решается типовая задача приведения линии 2-го порядка к каноническому виду, к которой я потихоньку начал вас готовить уже сегодня.

Ну а пока самое время перейти ко второй части лекции, где жертвами станут гипербола и парабола.

Решения и ответы:

Найденное каноническое уравнение эллипса и чертёж линии

Пример 2: Решение: поскольку фокусы канонически расположенного эллипса имеют координаты , то расстояние от каждого из фокусов до начала координат равно: .
По условию известно значение , из соотношения находим:

Запишем каноническое уравнение эллипса:

Вершины эллипса расположены в точках .
Найдём дополнительные точки:

Выполним чертёж:

Вычислим эксцентриситет:

Построение окружности после выделения полного квадрата

Пример 3: Решение: выделим полный квадрат:

– окружность радиуса с центром в точке .
Выполним чертёж:

Автор: Емелин Александр

Блог Емелина Александра

(Переход на главную страницу)

Zaochnik.com – профессиональная помощь студентам,

cкидкa 15% на первый зaкaз, при оформлении введите прoмoкoд: 5530-hihi5

© Copyright mathprofi.ru, Александр Емелин, 2010-2024. Копирование материалов сайта запрещено

Эллипс

Определение эллипса дает следующий способ его геометрического построения. Фиксируем на плоскости две точки F1 и F2, а неотрицательную постоянную величину обозначим через 2а. Пусть расстояние между точками F1 и F2 равно 2c. Представим себе, что нерастяжимая нить длиной 2а закреплена в точках F1 и F2, например, при помощи двух иголок. Ясно, что это возможно лишь при а ≥ с. Натянув нить карандашом, начертим линию, которая и будет эллипсом (рис. 7.1).

Рис 7.1. Эллипс

Итак, описываемое множество не пусто, если а ≥ с. При а = с эллипс представляет собой отрезок с концами F1 и F2, а при с = 0, т.е. если указанные в определении эллипса фиксированные точки совпадают, он является окружностью радиуса а. Отбрасывая эти вырожденные случаи, будем далее предполать, как правило, что а > с > 0.

Фиксированные точки F1 и F2 в определении 7.1 эллипса (см. рис. 7.1) называют фокусами эллипса, расстояние между ними, обозначенное через 2c, — фокальным расстоянием, а отрезки F1M и F2M, соединяющие произвольную точку M на эллипсе с его фокусами, — фокальными радиусами.

Вид эллипса полностью определяется фокальным расстоянием |F1F2| = 2с и параметром a, а его положение на плоскости — парой точек F1 и F2.

Из определения эллипса следует, что он симметричен относительно прямой, проходящей через фокусы F1 и F2, а также относительно прямой, которая делит отрезок F1F2 пополам и перпендикулярна ему (рис. 7.2, а). Эти прямые называют осями эллипса. Точка O их пересечения является центром симметрии эллипса, и ее называют центром эллипса, а точки пересечения эллипса с осями симметрии (точки A, B, C и D на рис. 7.2, а) — вершинами эллипса.

Рис 7.2. Эллипс

Число a называют большой полуосью эллипса, а b = √(a 2 — c 2 ) — его малой полуосью. Нетрудно заметить, что при c > 0 большая полуось a равна расстоянию от центра эллипса до тех его вершин, которые находятся на одной оси с фокусами эллипса (вершины A и B на рис. 7.2, а), а малая полуось b равна расстоянию от центра эллипса до двух других его вершин (вершины C и D на рис. 7.2, а).

Уравнение эллипса. Рассмотрим на плоскости некоторый эллипс с фокусами в точках F1 и F2, большой осью 2a. Пусть 2c — фокальное расстояние, 2c = |F1F2| 2 + y 2 ) + √((x + c) 2 + y 2 ) = 2a. (7.2)

Это уравнение неудобно, так как в нем присутствуют два квадратных радикала. Поэтому преобразуем его. Перенесем в уравнении (7.2) второй радикал в правую часть и возведем в квадрат:

(x — c) 2 + y 2 = 4a 2 — 4a√((x + c) 2 + y 2 ) + (x + c) 2 + y 2 .

После раскрытия скобок и приведения подобных слагаемых получаем

√((x + c) 2 + y 2 ) = a + εx

где ε = c/a. Повторяем операцию возведения в квадрат, чтобы убрать и второй радикал: (x + c) 2 + y 2 = a 2 + 2εax + ε 2 x 2 , или, учитывая значение введенного параметра ε, (a 2 — c 2 ) x 2 /a 2 + y 2 = a 2 — c 2 . Так как a 2 — c 2 = b 2 > 0, то

x 2 /a 2 + y 2 /b 2 = 1, a > b > 0. (7.4)

Уравнению (7.4) удовлетворяют координаты всех точек, лежащих на эллипсе. Но при выводе этого уравнения использовались неэквивалентные преобразования исходного уравнения (7.2) — два возведения в квадрат, убирающие квадратные радикалы. Возведение уравнения в квадрат является эквивалентным преобразованием, если в обеих его частях стоят величины с одинаковым знаком, но мы этого в своих преобразованиях не проверяли.

Мы можем не проверять эквивалентность преобразований, если учтем следующее. Пара точек F1 и F2, |F1F2| = 2c, на плоскости определяет семейство эллипсов с фокусами в этих точках. Каждая точка плоскости, кроме точек отрезка F1F2, принадлежит какому-нибудь эллипсу указанного семейства. При этом никакие два эллипса не пересекаются, так как сумма фокальных радиусов однозначно определяет конкретный эллипс. Итак, описанное семейство эллипсов без пересечений покрывает всю плоскость, кроме точек отрезка F1F2. Рассмотрим множество точек, координаты которых удовлетворяют уравнению (7.4) с данным значением параметра a. Может ли это множество распределяться между несколькими эллипсами? Часть точек множества принадлежит эллипсу с большой полуосью a. Пусть в этом множестве есть точка, лежащая на эллипсе с большой полуосью а. Тогда координаты этой точки подчиняются уравнению

Координаты этой точки подчиняются уравнению

т.е. уравнения (7.4) и (7.5) имеют общие решения. Однако легко убедиться, что система

Система уравнений

при ã ≠ a решений не имеет. Для этого достаточно исключить, например, x из первого уравнения:

Система уравнений

что после преобразований приводит к уравнению

Система уравнений

Уравнение эллипса с большой полуосью

не имеющему решений при ã ≠ a, поскольку . Итак, (7.4) есть уравнение эллипса с большой полуосью a > 0 и малой полуосью b =√(a 2 — c 2 ) > 0. Его называют каноническим уравнением эллипса.

Вид эллипса. Рассмотренный выше геометрический способ построения эллипса дает достаточное представление о внешнем виде эллипса. Но вид эллипса можно исследовать и с помощью его канонического уравнения (7.4). Например, можно, считая у ≥ 0, выразить у через x: y = b√( 1 — x 2 /a 2 ), и, исследовав эту функцию, построить ее график. Есть еще один способ построения эллипса. Окружность радиуса a с центром в начале канонической системы координат эллипса (7.4) описывается уравнением x 2 + y 2 = а 2 . Если ее сжать с коэффициентом a/b > 1 вдоль оси ординат, то получится кривая, которая описывается уравнением x 2 + (ya/b) 2 = a 2 , т. е. эллипс.

Замечание 7.1. Если ту же окружность сжать с коэффициентом a/b 2 — a 2 ), ε = 2c/2b = c/b.

При с =0, когда эллипс превращается в окружность, и ε = 0. В остальных случаях 0 2 — с 2 ), а с = εa = 4, то b = √(5 2 — 4 2 ) = 3. Значит каноническое уравнение имеет вид x 2 /5 2 + y 2 /3 2 = 1. Для построения эллипса удобно изобразить прямоугольник с центром в начале канонической системы координат, стороны которого параллельны осям симметрии эллипса и равны его соответствующим осям (рис. 7.4). Этот прямоугольник пересекается с

Рис 7.4.Эллипс

осями эллипса в его вершинах A(—5; 0), B(5; 0), C(0; -3), D(0; 3), причем сам эллипс вписан в него. На рис. 7.4 указаны также фокусы F1,2(±4; 0) эллипса.

Геометрические свойства эллипса. Перепишем первое уравнение в (7.6) в виде |F1M| = (а/ε — x)ε. Отметим, что величина а/ε — x при а > с положительна, так как фокус F1 не принадлежит эллипсу. Эта величина представляет собой расстояние до вертикальной прямой d: x = а/ε от точки M(x; у), лежащей левее этой прямой. Уравнение эллипса можно записать в виде

Оно означает, что этот эллипс состоит из тех точек M(x; у) плоскости, для которых отношение длины фокального радиуса F1M к расстоянию до прямой d есть величина постоянная, равная ε (рис. 7.5).

Рис 7.5.Эллипс

У прямой d есть » двойник » — вертикальная прямая d’, симметричная d относительно центра эллипса, которая задается уравнением x = —а/ε. Относительно d’ эллипс описывается так же, как и относительно d. Обе прямые d и d’ называют директрисами эллипса. Директрисы эллипса перпендикулярны той оси симметрии эллипса, на которой расположены его фокусы, и отстоят от центра эллипса на расстояние а/ε = а 2 /с (см. рис. 7.5).

Расстояние p от директрисы до ближайшего к ней фокуса называют фокальным параметром эллипса. Этот параметр равен

p = a/ε — c = (a 2 — c 2 )/c = b 2 /c

Эллипс обладает еще одним важным геометрическим свойством: фокальные радиусы F1M и F2M составляют с касательной к эллипсу в точке M равные углы (рис. 7.6).

Рис 7.6. Эллипс

Это свойство имеет наглядный физический смысл. Если в фокусе F1 расположить источник света, то луч, выходящий из этого фокуса, после отражения от эллипса пойдет по второму фокальному радиусу, так как после отражения он будет находиться под тем же углом к кривой, что и до отражения. Таким образом, все лучи, выходящие из фокуса F1, сконцентрируются во втором фокусе F2, и наоборот. Исходя из данной интерпретации указанное свойство называют оптическим свойством эллипса.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *