Что такое дифференциал в математике простыми словами
Перейти к содержимому

Что такое дифференциал в математике простыми словами

  • автор:

Что такое дифференциал? Объясните простыми словами, пожалуйста, а то вообще не понятно.

Дифференциал функции f(x) в точке х0 равен приращению, которое получает линейная функция, графиком которой является касательная, при переходе из точки x0 в точку x0 + Δx.

Короче, на графике зеленая черта — это дифференциал, то есть скорость с которой изменяется значение переменной y.

Остальные ответы

Короче, херня, которая создает разное вращение валов.

Что такое дифференциал функции?

Понятие дифференциала функции связано с такими важными математическими разделами как дифференциальное и интегральное исчисление и тесно связано с понятием производной функции. Наиболее часто дифференциал применяется для приближенных вычислений, а также для оценки погрешностей формул и измерений.

Дифференциал функции — это линейная часть приращения функции. Говоря о значении дифференциала функции, рассматривают конкретную точку функции и бесконечно малое изменение аргумента.

Пусть xo есть некоторая точка из области определения функции f(x), а Δx — есть бесконечно малая величина. Тогда дифференциал функции находится как произведение значения производной функции и приращения её аргумента. Дифференциал функции f(x) обозначается как df(x).

История открытия дифференциала

Чаще всего открытие дифференциально-интегрального исчисления принято связывать с именем Исаака Ньютона, однако, этот факт активно оспаривают учёные со всего света.

Действительно, открытие целого нового направления в науке, столь значимого для её развития, было бы ошибочно считать заслугой только одного учёного. Изначально интегрирование связывали с вычислением площадей и объёмов криволинейных фигур. Такие задачи, как известно, решались ещё во времена Архимеда, поэтому его имя также имеет отношение к открытию дифференциального исчисления.

Также дифференцирование имеет отношение к решению задач на проведение касательных к различным кривым. Данное направление активно развивали греческие математики. В те времена математики столкнулись с трудностью, которую не смогли решить в дальнейшем и представители Нового времени.

Дело в том, что для определения направления прямой требовалось знать координаты как минимум двух точек, а касательная имеет лишь одну точку соприкосновения с кривой. Этот факт натолкнул учёных на мысль о том, что в одной точке кривая может иметь несколько касательных. В то время ученые пришли к выводу, что прямая состоит не из точек, а из отрезков минимальной длины. Таким образом, они считали направление касательной в некоторой точке совпадающим с направлением атомарного отрезка в данной точке.

В дальнейшем учёные Нового времени опровергли данную теорию. В этот период огромный вклад в развитие науки внёс Исаак Ньютон. Ученый сформулировал определения и принципы решения производных, а также основы дифференциального исчисления, которых придерживаются учёные и в наши дни.

Дифференциальное исчисление широко применяется в математике и других науках для решения различных задач.

Геометрический смысл дифференциала

Геометрический смысл дифференциала заключается в следующем: дифференциал функции f(x) равен приращению ординаты касательной к графику функции, которая проведена через некоторую точку с координатами (x,y) при изменении координаты x на величину Δх=dx.

Дифференциал является главной линейной частью функции относительно приращения аргумента. Чем меньше приращение функции, тем большая доля приращения приходится на эту линейную часть.

Таким образом, при бесконечно малом Δх, приращение функции можно считать равным ее дифференциалу. Это свойство дифференциала позволяет использовать его для приблизительных вычислений и оценки погрешностей измерений.

Применение дифференциала в приближенных вычислениях

Поскольку дифференциал функции является частью ее приращения, то при бесконечно малом приращении аргумента он приблизительно равен приращению функции. При этом чем меньше приращение аргумента, тем точнее значение функции. Этот факт даёт возможность использования дифференциалов для приближённых вычислений.

С помощью таких вычислений можно решать различные виды задач. Приближённые вычисления практически всегда связаны с наличием погрешности.

Использование дифференциала для оценки погрешностей

Результаты измерений в большинстве случаев содержат ошибку, обусловленную неточностью измерительных приборов.

Число, несколько превышающее или равное этой неточности, называется «предельной абсолютной погрешностью».

Отношение предельной погрешности к значению измеряемой величины называют «предельной относительной погрешностью».

Для оценки величины погрешностей измерений используют дифференциальное исчисление.

Изучаем производные

Производная как смысл жизни или что такое дифференциал(d)

Эта одна из статей серии «Производная как смысл жизни», сначала я хотел сделать одну огромную статью про почти все темы по дифференцированию, но я передумал и сделаю несколько статей, возможно так даже будет легче для людей которые пытаются найти конкретную для себя тему.

Начало

Для начала лучше ознакомиться со статьей о самой прозводной (скоро будет). Ну если вы ознакомились, или уже были ознакомлены то идем дальше.

Как мы уже знаем формула записи производной выглядит так:

-напоминаю, что Δx — приращение аргумента, Δy — приращение функции.

Мы должны понимать, что если мы уберем предел, то к f'(x) прибавиться коофициент, я ее называю «неточность».

Так же вполне логично, что при Δx->0, β->0, так как чем меньше мы делаем разницу между x и x₀, тем меньше значение «неточности»(в статье о производной об этом подробнее рассказано).

Теперь выразим из этого равенства приращение функции(Δy):

И на этом следует пока остановиться и рассмотреть график.

Смотрим дифференциалу в лицо

Расмотрим такой график:

Как мы знаем производная в точке равняется значению тангенса угла в этой точке, то есть f'(x)=tg(α). Так что давайте обозначим производную, ну и приращения которыми она ограничена.

Как мы видим приращение функции(Δy) как бы разделено на две части: BC и CD.
И ведь по-сути нам ведь интересна именно та часть, которая показывает на сколько изменился у относительно касательной — то есть BC, а CD — это лишь та «погрешность» которая нам не особо интересна, поэтому введем понятие дифференциала:

Дифференциал(d) — это линейная часть приращения функции.
Дифференциал функции(dy) — это главная линейная часть приращения функции.

Зная это введем обозначение на графике:

Вернемся к равенству

BD = Δy и мы знаем, что BD = BC + CD, а значит Δy = BC + CD, где BC мы назвали главной линейной частью приращения функции(dy), следовательно Δy = dy + βΔx.

Из формулы мы понимаем, что dy=f'(x)Δx.

Хорошо, мы определили чему равен дифференциал функции, а что же тогда является дифференциалом независимой пременной функции(аргумента).

Графически мы видим, что Δx никак не разделена касательной, то есть Δx это полное приращение функции, а значит dx = Δx.

Так же мы можем найти по формуле: dx = (x)’Δx = 1*Δx = Δx

И зная, что dy = f'(x)dx, мы можем выразить производную: f'(x)=dy/dx.

Немного пределов

Добавим с левой части и с правой предел

В самом начале мы сказали, что если β->0, то Δx->0 и наборот, а значит:

Зная, что f'(x)Δx = dy, мы делаем вывод, что:

Тогда так же мы можем сказать, что дифференциал функции — это приращения функции у которой приращение аргумента стремиться к нулю, ну и это следуется из того же графика.

В свою очередь dx по прежнему Δx

Дифференциал (математика)

Дифференциа́л в математике — линейная часть приращения функции или отображения. Это понятие тесно связанное с понятием производной по направлению.

Обычно дифференциал f обозначается d f , а его значение в точке x обозначается d x f .

  • 1 Неформальное описание
  • 2 Определения
    • 2.1 Для функций
    • 2.2 Для отображений

    Неформальное описание [ ]

    Рассмотрим гладкую функцию f ( x ) . Проведем касательную к ней в точке x , и отложим на ней отрезок, такой длины, чтобы его проекция на ось x была равна Δ x . Проекция этого отрезка на ось y называется дифференциалом функции f ( x ) в точке x от Δ x . Таким образом, дифференциал может пониматься как функция двух переменных x и Δ x ,

    d f : ( x , Δ x ) ↦ d x f ( Δ x )

    d x f ( Δ x ) = f ′ ( x ) ⋅ Δ x ,

    f ( x + Δ x ) = f ( x ) + d x f ( Δ x ) + o ( Δ x ) .

    Определения [ ]

    Для функций [ ]

    Дифференциал гладкой вещественнозначной функции f определённой на M ( M — область в R n или гладкое многообразие) представляет собой 1-форму и обычно обозначается d f и определяется соотношением

    Для отображений [ ]

    Дифференциал гладкого отображения из гладком многообразия в многообразие F : M → N есть отображение между их d F : T M → T N , такое что для любой гладкой функции g : N → R имеем

    d F ( X ) g = X ( F ∘ g )

    Это понятие естественно обобщает дифференциал функции.

    Примеры [ ]

    • Пусть в открытом множестве Ω ⊂ R задана гладкая функция f : U → R . Тогда d f = f ′ d x , где f ′ обозначает производную f , а d x является постоянной формой определяемой d x ( V ) = V .
    • Пусть в открытом множестве Ω ⊂ R n задана гладкая функция f : Ω → R . Тогда d f = ∑ i = 1 n ∂ f ∂ x i d x i ^n\tfrac<\partial f><\partial x_i>dx_i> . Форма d x i может быть опеделена соотношением d x i ( V ) = v i , для вектора V = ( v 1 , v 2 , … , v n ) .
    • Пусть в открытом множестве Ω ⊂ R n задано гладкое отображение F : Ω → R m . Тогда
      d x F ( v ) = J ( x ) v ,
      где J ( x ) есть матрица Якоби отображения F в точке x .

    История [ ]

    Термин Дифференциал (от differentia -разность, различие) введен d x применялось для обозначение «бесконечно малой» — величины, которая меньше всякой конечной величины и всё же не равна нулю. Подобный взгляд оказался не удобным в большинстве разделов математики (за исключением См. также [ ]

    • cs:Diferenciál (matematika)

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *